YES We show the termination of the TRS R: f(x,f(a(),y)) -> f(f(y,f(f(a(),a()),a())),x) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(x,f(a(),y)) -> f#(f(y,f(f(a(),a()),a())),x) p2: f#(x,f(a(),y)) -> f#(y,f(f(a(),a()),a())) p3: f#(x,f(a(),y)) -> f#(f(a(),a()),a()) p4: f#(x,f(a(),y)) -> f#(a(),a()) and R consists of: r1: f(x,f(a(),y)) -> f(f(y,f(f(a(),a()),a())),x) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(x,f(a(),y)) -> f#(f(y,f(f(a(),a()),a())),x) and R consists of: r1: f(x,f(a(),y)) -> f(f(y,f(f(a(),a()),a())),x) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: f#_A(x1,x2) = x1 + x2 + (1,3) f_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (4,0) a_A() = (6,13) precedence: f# = f = a partial status: pi(f#) = [] pi(f) = [] pi(a) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: f#_A(x1,x2) = ((1,0),(0,0)) x2 + (0,1) f_A(x1,x2) = (1,2) a_A() = (2,3) precedence: f# = f = a partial status: pi(f#) = [] pi(f) = [] pi(a) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.