YES We show the termination of the TRS R: f(x,empty()) -> x f(empty(),cons(a,k)) -> f(cons(a,k),k) f(cons(a,k),y) -> f(y,k) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(empty(),cons(a,k)) -> f#(cons(a,k),k) p2: f#(cons(a,k),y) -> f#(y,k) and R consists of: r1: f(x,empty()) -> x r2: f(empty(),cons(a,k)) -> f(cons(a,k),k) r3: f(cons(a,k),y) -> f(y,k) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(empty(),cons(a,k)) -> f#(cons(a,k),k) p2: f#(cons(a,k),y) -> f#(y,k) and R consists of: r1: f(x,empty()) -> x r2: f(empty(),cons(a,k)) -> f(cons(a,k),k) r3: f(cons(a,k),y) -> f(y,k) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((0,1),(1,0)) x1 + ((1,1),(1,1)) x2 + (1,3) empty_A() = (1,1) cons_A(x1,x2) = ((0,1),(1,0)) x1 + ((1,1),(1,1)) x2 + (4,2) precedence: empty > f# = cons partial status: pi(f#) = [2] pi(empty) = [] pi(cons) = [2] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = (1,1) empty_A() = (3,1) cons_A(x1,x2) = (2,2) precedence: empty > cons > f# partial status: pi(f#) = [] pi(empty) = [] pi(cons) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(cons(a,k),y) -> f#(y,k) and R consists of: r1: f(x,empty()) -> x r2: f(empty(),cons(a,k)) -> f(cons(a,k),k) r3: f(cons(a,k),y) -> f(y,k) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(cons(a,k),y) -> f#(y,k) and R consists of: r1: f(x,empty()) -> x r2: f(empty(),cons(a,k)) -> f(cons(a,k),k) r3: f(cons(a,k),y) -> f(y,k) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: f#_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (2,1) cons_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (1,2) precedence: f# = cons partial status: pi(f#) = [] pi(cons) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: f#_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 cons_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (1,1) precedence: f# > cons partial status: pi(f#) = [1] pi(cons) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.