YES We show the termination of the TRS R: concat(leaf(),Y) -> Y concat(cons(U,V),Y) -> cons(U,concat(V,Y)) lessleaves(X,leaf()) -> false() lessleaves(leaf(),cons(W,Z)) -> true() lessleaves(cons(U,V),cons(W,Z)) -> lessleaves(concat(U,V),concat(W,Z)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: concat#(cons(U,V),Y) -> concat#(V,Y) p2: lessleaves#(cons(U,V),cons(W,Z)) -> lessleaves#(concat(U,V),concat(W,Z)) p3: lessleaves#(cons(U,V),cons(W,Z)) -> concat#(U,V) p4: lessleaves#(cons(U,V),cons(W,Z)) -> concat#(W,Z) and R consists of: r1: concat(leaf(),Y) -> Y r2: concat(cons(U,V),Y) -> cons(U,concat(V,Y)) r3: lessleaves(X,leaf()) -> false() r4: lessleaves(leaf(),cons(W,Z)) -> true() r5: lessleaves(cons(U,V),cons(W,Z)) -> lessleaves(concat(U,V),concat(W,Z)) The estimated dependency graph contains the following SCCs: {p2} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: lessleaves#(cons(U,V),cons(W,Z)) -> lessleaves#(concat(U,V),concat(W,Z)) and R consists of: r1: concat(leaf(),Y) -> Y r2: concat(cons(U,V),Y) -> cons(U,concat(V,Y)) r3: lessleaves(X,leaf()) -> false() r4: lessleaves(leaf(),cons(W,Z)) -> true() r5: lessleaves(cons(U,V),cons(W,Z)) -> lessleaves(concat(U,V),concat(W,Z)) The set of usable rules consists of r1, r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: lessleaves#_A(x1,x2) = x1 + x2 + (1,1) cons_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (2,1) concat_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (1,4) leaf_A() = (1,1) precedence: concat = leaf > cons > lessleaves# partial status: pi(lessleaves#) = [1, 2] pi(cons) = [1, 2] pi(concat) = [1] pi(leaf) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: lessleaves#_A(x1,x2) = x1 + x2 cons_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (3,3) concat_A(x1,x2) = ((1,0),(1,1)) x1 + (2,2) leaf_A() = (1,1) precedence: lessleaves# = cons = concat = leaf partial status: pi(lessleaves#) = [2] pi(cons) = [2] pi(concat) = [] pi(leaf) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: concat#(cons(U,V),Y) -> concat#(V,Y) and R consists of: r1: concat(leaf(),Y) -> Y r2: concat(cons(U,V),Y) -> cons(U,concat(V,Y)) r3: lessleaves(X,leaf()) -> false() r4: lessleaves(leaf(),cons(W,Z)) -> true() r5: lessleaves(cons(U,V),cons(W,Z)) -> lessleaves(concat(U,V),concat(W,Z)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: concat#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (2,2) cons_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (1,1) precedence: concat# = cons partial status: pi(concat#) = [] pi(cons) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: concat#_A(x1,x2) = (1,1) cons_A(x1,x2) = x1 + (2,2) precedence: concat# = cons partial status: pi(concat#) = [] pi(cons) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.