YES We show the termination of the TRS R: lt(|0|(),s(X)) -> true() lt(s(X),|0|()) -> false() lt(s(X),s(Y)) -> lt(X,Y) append(nil(),Y) -> Y append(add(N,X),Y) -> add(N,append(X,Y)) split(N,nil()) -> pair(nil(),nil()) split(N,add(M,Y)) -> f_1(split(N,Y),N,M,Y) f_1(pair(X,Z),N,M,Y) -> f_2(lt(N,M),N,M,Y,X,Z) f_2(true(),N,M,Y,X,Z) -> pair(X,add(M,Z)) f_2(false(),N,M,Y,X,Z) -> pair(add(M,X),Z) qsort(nil()) -> nil() qsort(add(N,X)) -> f_3(split(N,X),N,X) f_3(pair(Y,Z),N,X) -> append(qsort(Y),add(X,qsort(Z))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: lt#(s(X),s(Y)) -> lt#(X,Y) p2: append#(add(N,X),Y) -> append#(X,Y) p3: split#(N,add(M,Y)) -> f_1#(split(N,Y),N,M,Y) p4: split#(N,add(M,Y)) -> split#(N,Y) p5: f_1#(pair(X,Z),N,M,Y) -> f_2#(lt(N,M),N,M,Y,X,Z) p6: f_1#(pair(X,Z),N,M,Y) -> lt#(N,M) p7: qsort#(add(N,X)) -> f_3#(split(N,X),N,X) p8: qsort#(add(N,X)) -> split#(N,X) p9: f_3#(pair(Y,Z),N,X) -> append#(qsort(Y),add(X,qsort(Z))) p10: f_3#(pair(Y,Z),N,X) -> qsort#(Y) p11: f_3#(pair(Y,Z),N,X) -> qsort#(Z) and R consists of: r1: lt(|0|(),s(X)) -> true() r2: lt(s(X),|0|()) -> false() r3: lt(s(X),s(Y)) -> lt(X,Y) r4: append(nil(),Y) -> Y r5: append(add(N,X),Y) -> add(N,append(X,Y)) r6: split(N,nil()) -> pair(nil(),nil()) r7: split(N,add(M,Y)) -> f_1(split(N,Y),N,M,Y) r8: f_1(pair(X,Z),N,M,Y) -> f_2(lt(N,M),N,M,Y,X,Z) r9: f_2(true(),N,M,Y,X,Z) -> pair(X,add(M,Z)) r10: f_2(false(),N,M,Y,X,Z) -> pair(add(M,X),Z) r11: qsort(nil()) -> nil() r12: qsort(add(N,X)) -> f_3(split(N,X),N,X) r13: f_3(pair(Y,Z),N,X) -> append(qsort(Y),add(X,qsort(Z))) The estimated dependency graph contains the following SCCs: {p7, p10, p11} {p4} {p1} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f_3#(pair(Y,Z),N,X) -> qsort#(Z) p2: qsort#(add(N,X)) -> f_3#(split(N,X),N,X) p3: f_3#(pair(Y,Z),N,X) -> qsort#(Y) and R consists of: r1: lt(|0|(),s(X)) -> true() r2: lt(s(X),|0|()) -> false() r3: lt(s(X),s(Y)) -> lt(X,Y) r4: append(nil(),Y) -> Y r5: append(add(N,X),Y) -> add(N,append(X,Y)) r6: split(N,nil()) -> pair(nil(),nil()) r7: split(N,add(M,Y)) -> f_1(split(N,Y),N,M,Y) r8: f_1(pair(X,Z),N,M,Y) -> f_2(lt(N,M),N,M,Y,X,Z) r9: f_2(true(),N,M,Y,X,Z) -> pair(X,add(M,Z)) r10: f_2(false(),N,M,Y,X,Z) -> pair(add(M,X),Z) r11: qsort(nil()) -> nil() r12: qsort(add(N,X)) -> f_3(split(N,X),N,X) r13: f_3(pair(Y,Z),N,X) -> append(qsort(Y),add(X,qsort(Z))) The set of usable rules consists of r1, r2, r3, r6, r7, r8, r9, r10 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: f_3#_A(x1,x2,x3) = x1 + (1,1) pair_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (3,2) qsort#_A(x1) = ((1,0),(0,0)) x1 + (1,7) add_A(x1,x2) = x2 + (6,0) split_A(x1,x2) = ((1,0),(0,0)) x2 + (4,5) lt_A(x1,x2) = (2,5) |0|_A() = (2,3) s_A(x1) = ((1,0),(1,1)) x1 + (2,6) true_A() = (1,0) false_A() = (1,2) f_2_A(x1,x2,x3,x4,x5,x6) = ((1,0),(0,0)) x5 + ((1,0),(0,0)) x6 + (9,3) f_1_A(x1,x2,x3,x4) = ((1,0),(0,0)) x1 + (6,4) nil_A() = (1,1) precedence: add > qsort# > split = |0| > lt = s = f_1 > false > f_2 > f_3# = true > pair = nil partial status: pi(f_3#) = [1] pi(pair) = [] pi(qsort#) = [] pi(add) = [2] pi(split) = [] pi(lt) = [] pi(|0|) = [] pi(s) = [] pi(true) = [] pi(false) = [] pi(f_2) = [] pi(f_1) = [] pi(nil) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: f_3#_A(x1,x2,x3) = ((1,0),(1,1)) x1 pair_A(x1,x2) = (8,1) qsort#_A(x1) = (7,8) add_A(x1,x2) = x2 + (11,5) split_A(x1,x2) = (10,7) lt_A(x1,x2) = (13,0) |0|_A() = (0,3) s_A(x1) = (0,0) true_A() = (12,2) false_A() = (9,4) f_2_A(x1,x2,x3,x4,x5,x6) = (9,2) f_1_A(x1,x2,x3,x4) = (10,6) nil_A() = (9,2) precedence: split > f_1 > add = f_2 > nil > false > true > |0| > s > qsort# > pair > f_3# = lt partial status: pi(f_3#) = [1] pi(pair) = [] pi(qsort#) = [] pi(add) = [] pi(split) = [] pi(lt) = [] pi(|0|) = [] pi(s) = [] pi(true) = [] pi(false) = [] pi(f_2) = [] pi(f_1) = [] pi(nil) = [] The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: split#(N,add(M,Y)) -> split#(N,Y) and R consists of: r1: lt(|0|(),s(X)) -> true() r2: lt(s(X),|0|()) -> false() r3: lt(s(X),s(Y)) -> lt(X,Y) r4: append(nil(),Y) -> Y r5: append(add(N,X),Y) -> add(N,append(X,Y)) r6: split(N,nil()) -> pair(nil(),nil()) r7: split(N,add(M,Y)) -> f_1(split(N,Y),N,M,Y) r8: f_1(pair(X,Z),N,M,Y) -> f_2(lt(N,M),N,M,Y,X,Z) r9: f_2(true(),N,M,Y,X,Z) -> pair(X,add(M,Z)) r10: f_2(false(),N,M,Y,X,Z) -> pair(add(M,X),Z) r11: qsort(nil()) -> nil() r12: qsort(add(N,X)) -> f_3(split(N,X),N,X) r13: f_3(pair(Y,Z),N,X) -> append(qsort(Y),add(X,qsort(Z))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: split#_A(x1,x2) = x1 + ((0,0),(1,0)) x2 + (2,2) add_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (1,1) precedence: split# > add partial status: pi(split#) = [1] pi(add) = [1] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: split#_A(x1,x2) = x1 add_A(x1,x2) = x1 + (1,1) precedence: split# = add partial status: pi(split#) = [1] pi(add) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: lt#(s(X),s(Y)) -> lt#(X,Y) and R consists of: r1: lt(|0|(),s(X)) -> true() r2: lt(s(X),|0|()) -> false() r3: lt(s(X),s(Y)) -> lt(X,Y) r4: append(nil(),Y) -> Y r5: append(add(N,X),Y) -> add(N,append(X,Y)) r6: split(N,nil()) -> pair(nil(),nil()) r7: split(N,add(M,Y)) -> f_1(split(N,Y),N,M,Y) r8: f_1(pair(X,Z),N,M,Y) -> f_2(lt(N,M),N,M,Y,X,Z) r9: f_2(true(),N,M,Y,X,Z) -> pair(X,add(M,Z)) r10: f_2(false(),N,M,Y,X,Z) -> pair(add(M,X),Z) r11: qsort(nil()) -> nil() r12: qsort(add(N,X)) -> f_3(split(N,X),N,X) r13: f_3(pair(Y,Z),N,X) -> append(qsort(Y),add(X,qsort(Z))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: lt#_A(x1,x2) = ((1,0),(0,0)) x1 s_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: lt# > s partial status: pi(lt#) = [] pi(s) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: lt#_A(x1,x2) = (0,0) s_A(x1) = (1,1) precedence: lt# = s partial status: pi(lt#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: append#(add(N,X),Y) -> append#(X,Y) and R consists of: r1: lt(|0|(),s(X)) -> true() r2: lt(s(X),|0|()) -> false() r3: lt(s(X),s(Y)) -> lt(X,Y) r4: append(nil(),Y) -> Y r5: append(add(N,X),Y) -> add(N,append(X,Y)) r6: split(N,nil()) -> pair(nil(),nil()) r7: split(N,add(M,Y)) -> f_1(split(N,Y),N,M,Y) r8: f_1(pair(X,Z),N,M,Y) -> f_2(lt(N,M),N,M,Y,X,Z) r9: f_2(true(),N,M,Y,X,Z) -> pair(X,add(M,Z)) r10: f_2(false(),N,M,Y,X,Z) -> pair(add(M,X),Z) r11: qsort(nil()) -> nil() r12: qsort(add(N,X)) -> f_3(split(N,X),N,X) r13: f_3(pair(Y,Z),N,X) -> append(qsort(Y),add(X,qsort(Z))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: append#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (2,2) add_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (1,1) precedence: append# = add partial status: pi(append#) = [] pi(add) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: append#_A(x1,x2) = (1,1) add_A(x1,x2) = x1 + (2,2) precedence: append# = add partial status: pi(append#) = [] pi(add) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.