YES We show the termination of the TRS R: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) din(der(times(X,Y))) -> u31(din(der(X)),X,Y) u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) din(der(der(X))) -> u41(din(der(X)),X) u41(dout(DX),X) -> u42(din(der(DX)),X,DX) u42(dout(DDX),X,DX) -> dout(DDX) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> u21#(din(der(X)),X,Y) p2: din#(der(plus(X,Y))) -> din#(der(X)) p3: u21#(dout(DX),X,Y) -> u22#(din(der(Y)),X,Y,DX) p4: u21#(dout(DX),X,Y) -> din#(der(Y)) p5: din#(der(times(X,Y))) -> u31#(din(der(X)),X,Y) p6: din#(der(times(X,Y))) -> din#(der(X)) p7: u31#(dout(DX),X,Y) -> u32#(din(der(Y)),X,Y,DX) p8: u31#(dout(DX),X,Y) -> din#(der(Y)) p9: din#(der(der(X))) -> u41#(din(der(X)),X) p10: din#(der(der(X))) -> din#(der(X)) p11: u41#(dout(DX),X) -> u42#(din(der(DX)),X,DX) p12: u41#(dout(DX),X) -> din#(der(DX)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The estimated dependency graph contains the following SCCs: {p1, p2, p4, p5, p6, p8, p9, p10, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> u21#(din(der(X)),X,Y) p2: u21#(dout(DX),X,Y) -> din#(der(Y)) p3: din#(der(der(X))) -> din#(der(X)) p4: din#(der(der(X))) -> u41#(din(der(X)),X) p5: u41#(dout(DX),X) -> din#(der(DX)) p6: din#(der(times(X,Y))) -> din#(der(X)) p7: din#(der(times(X,Y))) -> u31#(din(der(X)),X,Y) p8: u31#(dout(DX),X,Y) -> din#(der(Y)) p9: din#(der(plus(X,Y))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: din#_A(x1) = (15,15) der_A(x1) = ((1,0),(1,0)) x1 + (16,9) plus_A(x1,x2) = (2,0) u21#_A(x1,x2,x3) = x1 + (12,1) din_A(x1) = (3,10) dout_A(x1) = ((0,0),(1,0)) x1 + (14,16) u41#_A(x1,x2) = ((1,0),(1,1)) x1 + (12,1) times_A(x1,x2) = ((1,0),(1,0)) x1 + (2,15) u31#_A(x1,x2,x3) = ((0,0),(1,0)) x1 + (15,1) u22_A(x1,x2,x3,x4) = ((1,0),(0,0)) x1 + (0,19) u32_A(x1,x2,x3,x4) = x1 + (0,6) u42_A(x1,x2,x3) = x1 + (1,0) u21_A(x1,x2,x3) = ((0,0),(1,0)) x1 + (3,6) u31_A(x1,x2,x3) = ((0,0),(1,0)) x1 + (3,3) u41_A(x1,x2) = ((1,0),(1,0)) x1 + (0,6) precedence: din > u21 > din# = der = plus = u21# = dout = u41# = times = u31# = u22 = u32 = u42 = u31 = u41 partial status: pi(din#) = [] pi(der) = [] pi(plus) = [] pi(u21#) = [1] pi(din) = [] pi(dout) = [] pi(u41#) = [1] pi(times) = [] pi(u31#) = [] pi(u22) = [] pi(u32) = [1] pi(u42) = [] pi(u21) = [] pi(u31) = [] pi(u41) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: din#_A(x1) = (4,7) der_A(x1) = (0,5) plus_A(x1,x2) = (8,0) u21#_A(x1,x2,x3) = ((1,0),(0,0)) x1 + (2,6) din_A(x1) = (2,0) dout_A(x1) = (6,1) u41#_A(x1,x2) = ((1,0),(0,0)) x1 + (1,8) times_A(x1,x2) = (5,8) u31#_A(x1,x2,x3) = (4,7) u22_A(x1,x2,x3,x4) = (7,0) u32_A(x1,x2,x3,x4) = ((0,0),(1,0)) x1 + (9,1) u42_A(x1,x2,x3) = (0,0) u21_A(x1,x2,x3) = (9,1) u31_A(x1,x2,x3) = (1,0) u41_A(x1,x2) = (1,6) precedence: der = din > u41# > din# = u31# > plus > u21# > u41 > dout = times = u22 = u42 > u31 > u32 = u21 partial status: pi(din#) = [] pi(der) = [] pi(plus) = [] pi(u21#) = [] pi(din) = [] pi(dout) = [] pi(u41#) = [] pi(times) = [] pi(u31#) = [] pi(u22) = [] pi(u32) = [] pi(u42) = [] pi(u21) = [] pi(u31) = [] pi(u41) = [] The next rules are strictly ordered: p1, p4, p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: u21#(dout(DX),X,Y) -> din#(der(Y)) p2: din#(der(der(X))) -> din#(der(X)) p3: din#(der(times(X,Y))) -> din#(der(X)) p4: din#(der(times(X,Y))) -> u31#(din(der(X)),X,Y) p5: u31#(dout(DX),X,Y) -> din#(der(Y)) p6: din#(der(plus(X,Y))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(der(X))) -> din#(der(X)) p2: din#(der(plus(X,Y))) -> din#(der(X)) p3: din#(der(times(X,Y))) -> u31#(din(der(X)),X,Y) p4: u31#(dout(DX),X,Y) -> din#(der(Y)) p5: din#(der(times(X,Y))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: din#_A(x1) = ((1,0),(1,1)) x1 + (13,5) der_A(x1) = ((1,0),(0,0)) x1 + (4,0) plus_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (18,10) times_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + (12,9) u31#_A(x1,x2,x3) = x1 + ((1,0),(1,0)) x3 + (17,2) din_A(x1) = ((1,0),(1,0)) x1 + (6,1) dout_A(x1) = (1,6) u22_A(x1,x2,x3,x4) = (2,5) u32_A(x1,x2,x3,x4) = x2 + ((1,0),(1,0)) x3 + (2,7) u42_A(x1,x2,x3) = (2,7) u21_A(x1,x2,x3) = (3,0) u31_A(x1,x2,x3) = x2 + ((1,0),(1,0)) x3 + (11,8) u41_A(x1,x2) = (9,8) precedence: din# = der = plus = times = u31# = din = dout = u22 = u32 = u42 = u21 = u31 = u41 partial status: pi(din#) = [] pi(der) = [] pi(plus) = [] pi(times) = [] pi(u31#) = [] pi(din) = [] pi(dout) = [] pi(u22) = [] pi(u32) = [] pi(u42) = [] pi(u21) = [] pi(u31) = [] pi(u41) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: din#_A(x1) = x1 + (1,3) der_A(x1) = (4,0) plus_A(x1,x2) = (0,0) times_A(x1,x2) = (10,0) u31#_A(x1,x2,x3) = x1 + (6,3) din_A(x1) = (3,2) dout_A(x1) = (0,1) u22_A(x1,x2,x3,x4) = (0,0) u32_A(x1,x2,x3,x4) = (0,0) u42_A(x1,x2,x3) = (1,2) u21_A(x1,x2,x3) = (0,0) u31_A(x1,x2,x3) = x2 u41_A(x1,x2) = (2,1) precedence: din > der = plus = u32 = u42 = u31 > u22 > din# = times = u31# = dout = u21 = u41 partial status: pi(din#) = [1] pi(der) = [] pi(plus) = [] pi(times) = [] pi(u31#) = [1] pi(din) = [] pi(dout) = [] pi(u22) = [] pi(u32) = [] pi(u42) = [] pi(u21) = [] pi(u31) = [2] pi(u41) = [] The next rules are strictly ordered: p1, p3, p4, p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: din#_A(x1) = ((0,0),(1,0)) x1 + (4,1) der_A(x1) = x1 + (3,7) plus_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (2,8) precedence: plus > din# = der partial status: pi(din#) = [] pi(der) = [] pi(plus) = [2] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: din#_A(x1) = (1,1) der_A(x1) = (0,0) plus_A(x1,x2) = (2,2) precedence: plus > din# = der partial status: pi(din#) = [] pi(der) = [] pi(plus) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.