YES We show the termination of the TRS R: +(|0|(),y) -> y +(s(x),y) -> s(+(x,y)) +(p(x),y) -> p(+(x,y)) minus(|0|()) -> |0|() minus(s(x)) -> p(minus(x)) minus(p(x)) -> s(minus(x)) *(|0|(),y) -> |0|() *(s(x),y) -> +(*(x,y),y) *(p(x),y) -> +(*(x,y),minus(y)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(s(x),y) -> +#(x,y) p2: +#(p(x),y) -> +#(x,y) p3: minus#(s(x)) -> minus#(x) p4: minus#(p(x)) -> minus#(x) p5: *#(s(x),y) -> +#(*(x,y),y) p6: *#(s(x),y) -> *#(x,y) p7: *#(p(x),y) -> +#(*(x,y),minus(y)) p8: *#(p(x),y) -> *#(x,y) p9: *#(p(x),y) -> minus#(y) and R consists of: r1: +(|0|(),y) -> y r2: +(s(x),y) -> s(+(x,y)) r3: +(p(x),y) -> p(+(x,y)) r4: minus(|0|()) -> |0|() r5: minus(s(x)) -> p(minus(x)) r6: minus(p(x)) -> s(minus(x)) r7: *(|0|(),y) -> |0|() r8: *(s(x),y) -> +(*(x,y),y) r9: *(p(x),y) -> +(*(x,y),minus(y)) The estimated dependency graph contains the following SCCs: {p6, p8} {p1, p2} {p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: *#(p(x),y) -> *#(x,y) p2: *#(s(x),y) -> *#(x,y) and R consists of: r1: +(|0|(),y) -> y r2: +(s(x),y) -> s(+(x,y)) r3: +(p(x),y) -> p(+(x,y)) r4: minus(|0|()) -> |0|() r5: minus(s(x)) -> p(minus(x)) r6: minus(p(x)) -> s(minus(x)) r7: *(|0|(),y) -> |0|() r8: *(s(x),y) -> +(*(x,y),y) r9: *(p(x),y) -> +(*(x,y),minus(y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: *#_A(x1,x2) = x1 p_A(x1) = x1 + (1,1) s_A(x1) = x1 precedence: p = s > *# partial status: pi(*#) = [1] pi(p) = [] pi(s) = [1] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: *#_A(x1,x2) = (0,0) p_A(x1) = (1,1) s_A(x1) = (1,1) precedence: s > *# = p partial status: pi(*#) = [] pi(p) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: *#(s(x),y) -> *#(x,y) and R consists of: r1: +(|0|(),y) -> y r2: +(s(x),y) -> s(+(x,y)) r3: +(p(x),y) -> p(+(x,y)) r4: minus(|0|()) -> |0|() r5: minus(s(x)) -> p(minus(x)) r6: minus(p(x)) -> s(minus(x)) r7: *(|0|(),y) -> |0|() r8: *(s(x),y) -> +(*(x,y),y) r9: *(p(x),y) -> +(*(x,y),minus(y)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: *#(s(x),y) -> *#(x,y) and R consists of: r1: +(|0|(),y) -> y r2: +(s(x),y) -> s(+(x,y)) r3: +(p(x),y) -> p(+(x,y)) r4: minus(|0|()) -> |0|() r5: minus(s(x)) -> p(minus(x)) r6: minus(p(x)) -> s(minus(x)) r7: *(|0|(),y) -> |0|() r8: *(s(x),y) -> +(*(x,y),y) r9: *(p(x),y) -> +(*(x,y),minus(y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: *#_A(x1,x2) = ((1,0),(1,1)) x1 + (1,2) s_A(x1) = ((1,0),(0,0)) x1 + (2,1) precedence: s > *# partial status: pi(*#) = [1] pi(s) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: *#_A(x1,x2) = (1,1) s_A(x1) = (2,2) precedence: *# > s partial status: pi(*#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(s(x),y) -> +#(x,y) p2: +#(p(x),y) -> +#(x,y) and R consists of: r1: +(|0|(),y) -> y r2: +(s(x),y) -> s(+(x,y)) r3: +(p(x),y) -> p(+(x,y)) r4: minus(|0|()) -> |0|() r5: minus(s(x)) -> p(minus(x)) r6: minus(p(x)) -> s(minus(x)) r7: *(|0|(),y) -> |0|() r8: *(s(x),y) -> +(*(x,y),y) r9: *(p(x),y) -> +(*(x,y),minus(y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: +#_A(x1,x2) = x1 s_A(x1) = x1 + (1,1) p_A(x1) = ((1,0),(1,1)) x1 + (1,1) precedence: p > s > +# partial status: pi(+#) = [1] pi(s) = [1] pi(p) = [1] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: +#_A(x1,x2) = x1 s_A(x1) = x1 + (1,1) p_A(x1) = x1 + (1,1) precedence: s > +# = p partial status: pi(+#) = [1] pi(s) = [] pi(p) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(p(x),y) -> +#(x,y) and R consists of: r1: +(|0|(),y) -> y r2: +(s(x),y) -> s(+(x,y)) r3: +(p(x),y) -> p(+(x,y)) r4: minus(|0|()) -> |0|() r5: minus(s(x)) -> p(minus(x)) r6: minus(p(x)) -> s(minus(x)) r7: *(|0|(),y) -> |0|() r8: *(s(x),y) -> +(*(x,y),y) r9: *(p(x),y) -> +(*(x,y),minus(y)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(p(x),y) -> +#(x,y) and R consists of: r1: +(|0|(),y) -> y r2: +(s(x),y) -> s(+(x,y)) r3: +(p(x),y) -> p(+(x,y)) r4: minus(|0|()) -> |0|() r5: minus(s(x)) -> p(minus(x)) r6: minus(p(x)) -> s(minus(x)) r7: *(|0|(),y) -> |0|() r8: *(s(x),y) -> +(*(x,y),y) r9: *(p(x),y) -> +(*(x,y),minus(y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: +#_A(x1,x2) = ((1,0),(1,1)) x1 + (1,2) p_A(x1) = ((1,0),(0,0)) x1 + (2,1) precedence: p > +# partial status: pi(+#) = [1] pi(p) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: +#_A(x1,x2) = (1,1) p_A(x1) = (2,2) precedence: +# > p partial status: pi(+#) = [] pi(p) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(s(x)) -> minus#(x) p2: minus#(p(x)) -> minus#(x) and R consists of: r1: +(|0|(),y) -> y r2: +(s(x),y) -> s(+(x,y)) r3: +(p(x),y) -> p(+(x,y)) r4: minus(|0|()) -> |0|() r5: minus(s(x)) -> p(minus(x)) r6: minus(p(x)) -> s(minus(x)) r7: *(|0|(),y) -> |0|() r8: *(s(x),y) -> +(*(x,y),y) r9: *(p(x),y) -> +(*(x,y),minus(y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: minus#_A(x1) = x1 + (1,2) s_A(x1) = x1 + (2,1) p_A(x1) = ((1,0),(1,1)) x1 + (2,1) precedence: minus# = s = p partial status: pi(minus#) = [1] pi(s) = [1] pi(p) = [1] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: minus#_A(x1) = ((1,0),(1,0)) x1 + (0,2) s_A(x1) = ((1,0),(0,0)) x1 + (1,1) p_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: minus# = s = p partial status: pi(minus#) = [] pi(s) = [] pi(p) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.