YES We show the termination of the TRS R: a(a(x)) -> b(b(x)) b(b(a(x))) -> a(b(b(x))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(x)) -> b#(b(x)) p2: a#(a(x)) -> b#(x) p3: b#(b(a(x))) -> a#(b(b(x))) p4: b#(b(a(x))) -> b#(b(x)) p5: b#(b(a(x))) -> b#(x) and R consists of: r1: a(a(x)) -> b(b(x)) r2: b(b(a(x))) -> a(b(b(x))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(x)) -> b#(b(x)) p2: b#(b(a(x))) -> b#(x) p3: b#(b(a(x))) -> b#(b(x)) p4: b#(b(a(x))) -> a#(b(b(x))) p5: a#(a(x)) -> b#(x) and R consists of: r1: a(a(x)) -> b(b(x)) r2: b(b(a(x))) -> a(b(b(x))) The set of usable rules consists of r1, r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a#_A(x1) = x1 + (2,4) a_A(x1) = x1 + (7,0) b#_A(x1) = x1 + (6,2) b_A(x1) = ((1,0),(0,0)) x1 + (2,1) precedence: b > a# = a > b# partial status: pi(a#) = [] pi(a) = [1] pi(b#) = [1] pi(b) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a#_A(x1) = (1,1) a_A(x1) = (2,0) b#_A(x1) = (1,1) b_A(x1) = (2,0) precedence: a# = b# = b > a partial status: pi(a#) = [] pi(a) = [] pi(b#) = [] pi(b) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(x)) -> b#(b(x)) p2: b#(b(a(x))) -> b#(x) p3: b#(b(a(x))) -> a#(b(b(x))) p4: a#(a(x)) -> b#(x) and R consists of: r1: a(a(x)) -> b(b(x)) r2: b(b(a(x))) -> a(b(b(x))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(x)) -> b#(b(x)) p2: b#(b(a(x))) -> a#(b(b(x))) p3: a#(a(x)) -> b#(x) p4: b#(b(a(x))) -> b#(x) and R consists of: r1: a(a(x)) -> b(b(x)) r2: b(b(a(x))) -> a(b(b(x))) The set of usable rules consists of r1, r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a#_A(x1) = ((0,0),(1,0)) x1 + (1,1) a_A(x1) = x1 + (2,2) b#_A(x1) = ((0,0),(1,0)) x1 + (1,1) b_A(x1) = x1 precedence: a > a# = b# > b partial status: pi(a#) = [] pi(a) = [] pi(b#) = [] pi(b) = [1] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a#_A(x1) = (0,0) a_A(x1) = (1,1) b#_A(x1) = (0,0) b_A(x1) = (1,1) precedence: a = b > a# = b# partial status: pi(a#) = [] pi(a) = [] pi(b#) = [] pi(b) = [] The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains.