YES We show the termination of the TRS R: c(c(z,y,a()),a(),a()) -> b(z,y) f(c(x,y,z)) -> c(z,f(b(y,z)),a()) b(z,b(c(a(),y,a()),f(f(x)))) -> c(c(y,a(),z),z,x) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: c#(c(z,y,a()),a(),a()) -> b#(z,y) p2: f#(c(x,y,z)) -> c#(z,f(b(y,z)),a()) p3: f#(c(x,y,z)) -> f#(b(y,z)) p4: f#(c(x,y,z)) -> b#(y,z) p5: b#(z,b(c(a(),y,a()),f(f(x)))) -> c#(c(y,a(),z),z,x) p6: b#(z,b(c(a(),y,a()),f(f(x)))) -> c#(y,a(),z) and R consists of: r1: c(c(z,y,a()),a(),a()) -> b(z,y) r2: f(c(x,y,z)) -> c(z,f(b(y,z)),a()) r3: b(z,b(c(a(),y,a()),f(f(x)))) -> c(c(y,a(),z),z,x) The estimated dependency graph contains the following SCCs: {p3} {p1, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(c(x,y,z)) -> f#(b(y,z)) and R consists of: r1: c(c(z,y,a()),a(),a()) -> b(z,y) r2: f(c(x,y,z)) -> c(z,f(b(y,z)),a()) r3: b(z,b(c(a(),y,a()),f(f(x)))) -> c(c(y,a(),z),z,x) The set of usable rules consists of r1, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = ((1,0),(0,0)) x1 + (0,1) c_A(x1,x2,x3) = ((0,1),(0,1)) x1 + ((0,0),(0,1)) x2 + ((1,1),(0,0)) x3 + (1,2) b_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,1),(0,1)) x2 + (1,0) a_A() = (0,0) f_A(x1) = ((1,0),(1,1)) x1 + (2,4) precedence: f# = c = b = a = f partial status: pi(f#) = [] pi(c) = [] pi(b) = [] pi(a) = [] pi(f) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = ((0,1),(0,0)) x1 + (1,1) c_A(x1,x2,x3) = ((1,1),(0,1)) x3 + (2,3) b_A(x1,x2) = (1,2) a_A() = (0,0) f_A(x1) = (1,1) precedence: c = b > a = f > f# partial status: pi(f#) = [] pi(c) = [3] pi(b) = [] pi(a) = [] pi(f) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: c#(c(z,y,a()),a(),a()) -> b#(z,y) p2: b#(z,b(c(a(),y,a()),f(f(x)))) -> c#(y,a(),z) p3: b#(z,b(c(a(),y,a()),f(f(x)))) -> c#(c(y,a(),z),z,x) and R consists of: r1: c(c(z,y,a()),a(),a()) -> b(z,y) r2: f(c(x,y,z)) -> c(z,f(b(y,z)),a()) r3: b(z,b(c(a(),y,a()),f(f(x)))) -> c(c(y,a(),z),z,x) The set of usable rules consists of r1, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: c#_A(x1,x2,x3) = x1 + (1,60) c_A(x1,x2,x3) = x1 + x2 + (4,19) a_A() = (2,0) b#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + (3,1) b_A(x1,x2) = x1 + x2 + (3,39) f_A(x1) = (8,1) precedence: c# = c = a = b# = b = f partial status: pi(c#) = [] pi(c) = [] pi(a) = [] pi(b#) = [] pi(b) = [] pi(f) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: c#_A(x1,x2,x3) = (0,0) c_A(x1,x2,x3) = ((0,0),(1,0)) x1 + (1,0) a_A() = (2,0) b#_A(x1,x2) = (2,0) b_A(x1,x2) = (3,2) f_A(x1) = (3,2) precedence: b > c# = c = a = b# = f partial status: pi(c#) = [] pi(c) = [] pi(a) = [] pi(b#) = [] pi(b) = [] pi(f) = [] The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains.