YES We show the termination of the TRS R: t(N) -> cs(r(q(N)),nt(ns(N))) q(|0|()) -> |0|() q(s(X)) -> s(p(q(X),d(X))) d(|0|()) -> |0|() d(s(X)) -> s(s(d(X))) p(|0|(),X) -> X p(X,|0|()) -> X p(s(X),s(Y)) -> s(s(p(X,Y))) f(|0|(),X) -> nil() f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) t(X) -> nt(X) s(X) -> ns(X) f(X1,X2) -> nf(X1,X2) a(nt(X)) -> t(a(X)) a(ns(X)) -> s(a(X)) a(nf(X1,X2)) -> f(a(X1),a(X2)) a(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: t#(N) -> q#(N) p2: q#(s(X)) -> s#(p(q(X),d(X))) p3: q#(s(X)) -> p#(q(X),d(X)) p4: q#(s(X)) -> q#(X) p5: q#(s(X)) -> d#(X) p6: d#(s(X)) -> s#(s(d(X))) p7: d#(s(X)) -> s#(d(X)) p8: d#(s(X)) -> d#(X) p9: p#(s(X),s(Y)) -> s#(s(p(X,Y))) p10: p#(s(X),s(Y)) -> s#(p(X,Y)) p11: p#(s(X),s(Y)) -> p#(X,Y) p12: f#(s(X),cs(Y,Z)) -> a#(Z) p13: a#(nt(X)) -> t#(a(X)) p14: a#(nt(X)) -> a#(X) p15: a#(ns(X)) -> s#(a(X)) p16: a#(ns(X)) -> a#(X) p17: a#(nf(X1,X2)) -> f#(a(X1),a(X2)) p18: a#(nf(X1,X2)) -> a#(X1) p19: a#(nf(X1,X2)) -> a#(X2) and R consists of: r1: t(N) -> cs(r(q(N)),nt(ns(N))) r2: q(|0|()) -> |0|() r3: q(s(X)) -> s(p(q(X),d(X))) r4: d(|0|()) -> |0|() r5: d(s(X)) -> s(s(d(X))) r6: p(|0|(),X) -> X r7: p(X,|0|()) -> X r8: p(s(X),s(Y)) -> s(s(p(X,Y))) r9: f(|0|(),X) -> nil() r10: f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) r11: t(X) -> nt(X) r12: s(X) -> ns(X) r13: f(X1,X2) -> nf(X1,X2) r14: a(nt(X)) -> t(a(X)) r15: a(ns(X)) -> s(a(X)) r16: a(nf(X1,X2)) -> f(a(X1),a(X2)) r17: a(X) -> X The estimated dependency graph contains the following SCCs: {p12, p14, p16, p17, p18, p19} {p4} {p11} {p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(nf(X1,X2)) -> a#(X2) p2: a#(nf(X1,X2)) -> a#(X1) p3: a#(nf(X1,X2)) -> f#(a(X1),a(X2)) p4: f#(s(X),cs(Y,Z)) -> a#(Z) p5: a#(ns(X)) -> a#(X) p6: a#(nt(X)) -> a#(X) and R consists of: r1: t(N) -> cs(r(q(N)),nt(ns(N))) r2: q(|0|()) -> |0|() r3: q(s(X)) -> s(p(q(X),d(X))) r4: d(|0|()) -> |0|() r5: d(s(X)) -> s(s(d(X))) r6: p(|0|(),X) -> X r7: p(X,|0|()) -> X r8: p(s(X),s(Y)) -> s(s(p(X,Y))) r9: f(|0|(),X) -> nil() r10: f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) r11: t(X) -> nt(X) r12: s(X) -> ns(X) r13: f(X1,X2) -> nf(X1,X2) r14: a(nt(X)) -> t(a(X)) r15: a(ns(X)) -> s(a(X)) r16: a(nf(X1,X2)) -> f(a(X1),a(X2)) r17: a(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a#_A(x1) = ((0,0),(1,0)) x1 + (1,4) nf_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (3,5) f#_A(x1,x2) = ((0,0),(1,0)) x2 + (1,6) a_A(x1) = x1 + (0,8) s_A(x1) = ((1,0),(0,0)) x1 + (0,10) cs_A(x1,x2) = ((1,0),(0,0)) x2 + (0,11) ns_A(x1) = ((1,0),(0,0)) x1 + (0,9) nt_A(x1) = ((1,0),(0,0)) x1 + (0,9) d_A(x1) = (0,11) |0|_A() = (0,11) p_A(x1,x2) = x1 + x2 + (0,11) q_A(x1) = (1,12) t_A(x1) = ((1,0),(0,0)) x1 + (0,17) r_A(x1) = (1,1) f_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (3,12) nil_A() = (0,11) precedence: p = f > a = t = r > a# = f# = cs > nil > nt = q > nf = s = ns = d = |0| partial status: pi(a#) = [] pi(nf) = [] pi(f#) = [] pi(a) = [1] pi(s) = [] pi(cs) = [] pi(ns) = [] pi(nt) = [] pi(d) = [] pi(|0|) = [] pi(p) = [1, 2] pi(q) = [] pi(t) = [] pi(r) = [] pi(f) = [] pi(nil) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a#_A(x1) = (1,1) nf_A(x1,x2) = (2,5) f#_A(x1,x2) = (1,1) a_A(x1) = ((1,0),(1,1)) x1 + (0,3) s_A(x1) = (3,8) cs_A(x1,x2) = (4,9) ns_A(x1) = (0,4) nt_A(x1) = (5,2) d_A(x1) = (3,9) |0|_A() = (1,0) p_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (4,9) q_A(x1) = (4,2) t_A(x1) = (5,3) r_A(x1) = (0,0) f_A(x1,x2) = (1,4) nil_A() = (0,0) precedence: a = cs = d > s = |0| = p = q > ns = t = r > f = nil > a# = nf = f# = nt partial status: pi(a#) = [] pi(nf) = [] pi(f#) = [] pi(a) = [] pi(s) = [] pi(cs) = [] pi(ns) = [] pi(nt) = [] pi(d) = [] pi(|0|) = [] pi(p) = [] pi(q) = [] pi(t) = [] pi(r) = [] pi(f) = [] pi(nil) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(nf(X1,X2)) -> a#(X2) p2: a#(nf(X1,X2)) -> f#(a(X1),a(X2)) p3: f#(s(X),cs(Y,Z)) -> a#(Z) p4: a#(ns(X)) -> a#(X) p5: a#(nt(X)) -> a#(X) and R consists of: r1: t(N) -> cs(r(q(N)),nt(ns(N))) r2: q(|0|()) -> |0|() r3: q(s(X)) -> s(p(q(X),d(X))) r4: d(|0|()) -> |0|() r5: d(s(X)) -> s(s(d(X))) r6: p(|0|(),X) -> X r7: p(X,|0|()) -> X r8: p(s(X),s(Y)) -> s(s(p(X,Y))) r9: f(|0|(),X) -> nil() r10: f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) r11: t(X) -> nt(X) r12: s(X) -> ns(X) r13: f(X1,X2) -> nf(X1,X2) r14: a(nt(X)) -> t(a(X)) r15: a(ns(X)) -> s(a(X)) r16: a(nf(X1,X2)) -> f(a(X1),a(X2)) r17: a(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(nf(X1,X2)) -> a#(X2) p2: a#(nt(X)) -> a#(X) p3: a#(ns(X)) -> a#(X) p4: a#(nf(X1,X2)) -> f#(a(X1),a(X2)) p5: f#(s(X),cs(Y,Z)) -> a#(Z) and R consists of: r1: t(N) -> cs(r(q(N)),nt(ns(N))) r2: q(|0|()) -> |0|() r3: q(s(X)) -> s(p(q(X),d(X))) r4: d(|0|()) -> |0|() r5: d(s(X)) -> s(s(d(X))) r6: p(|0|(),X) -> X r7: p(X,|0|()) -> X r8: p(s(X),s(Y)) -> s(s(p(X,Y))) r9: f(|0|(),X) -> nil() r10: f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) r11: t(X) -> nt(X) r12: s(X) -> ns(X) r13: f(X1,X2) -> nf(X1,X2) r14: a(nt(X)) -> t(a(X)) r15: a(ns(X)) -> s(a(X)) r16: a(nf(X1,X2)) -> f(a(X1),a(X2)) r17: a(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a#_A(x1) = ((0,0),(1,0)) x1 + (3,0) nf_A(x1,x2) = ((1,0),(1,0)) x2 + (0,2) nt_A(x1) = ((1,0),(0,0)) x1 + (2,1) ns_A(x1) = x1 f#_A(x1,x2) = ((0,0),(1,0)) x2 + (3,0) a_A(x1) = x1 + (0,3) s_A(x1) = x1 cs_A(x1,x2) = ((1,0),(0,0)) x2 d_A(x1) = (0,0) |0|_A() = (0,0) p_A(x1,x2) = x1 + x2 q_A(x1) = (1,1) t_A(x1) = ((1,0),(0,0)) x1 + (2,2) r_A(x1) = (1,1) f_A(x1,x2) = ((1,0),(1,0)) x2 + (0,4) nil_A() = (0,0) precedence: a = p > a# = f# > t = f > nf > nt > d = q = nil > s > ns = r > cs = |0| partial status: pi(a#) = [] pi(nf) = [] pi(nt) = [] pi(ns) = [] pi(f#) = [] pi(a) = [] pi(s) = [] pi(cs) = [] pi(d) = [] pi(|0|) = [] pi(p) = [1, 2] pi(q) = [] pi(t) = [] pi(r) = [] pi(f) = [] pi(nil) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a#_A(x1) = (0,2) nf_A(x1,x2) = (0,3) nt_A(x1) = (1,1) ns_A(x1) = (0,0) f#_A(x1,x2) = (0,2) a_A(x1) = (3,6) s_A(x1) = (2,1) cs_A(x1,x2) = (0,4) d_A(x1) = (3,2) |0|_A() = (1,3) p_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (3,2) q_A(x1) = (3,8) t_A(x1) = (2,7) r_A(x1) = (0,0) f_A(x1,x2) = (0,5) nil_A() = (0,0) precedence: p > q > f > |0| > nt = t > r > a = cs > s > a# = nf = f# > ns = d = nil partial status: pi(a#) = [] pi(nf) = [] pi(nt) = [] pi(ns) = [] pi(f#) = [] pi(a) = [] pi(s) = [] pi(cs) = [] pi(d) = [] pi(|0|) = [] pi(p) = [1] pi(q) = [] pi(t) = [] pi(r) = [] pi(f) = [] pi(nil) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(nf(X1,X2)) -> a#(X2) p2: a#(ns(X)) -> a#(X) p3: a#(nf(X1,X2)) -> f#(a(X1),a(X2)) p4: f#(s(X),cs(Y,Z)) -> a#(Z) and R consists of: r1: t(N) -> cs(r(q(N)),nt(ns(N))) r2: q(|0|()) -> |0|() r3: q(s(X)) -> s(p(q(X),d(X))) r4: d(|0|()) -> |0|() r5: d(s(X)) -> s(s(d(X))) r6: p(|0|(),X) -> X r7: p(X,|0|()) -> X r8: p(s(X),s(Y)) -> s(s(p(X,Y))) r9: f(|0|(),X) -> nil() r10: f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) r11: t(X) -> nt(X) r12: s(X) -> ns(X) r13: f(X1,X2) -> nf(X1,X2) r14: a(nt(X)) -> t(a(X)) r15: a(ns(X)) -> s(a(X)) r16: a(nf(X1,X2)) -> f(a(X1),a(X2)) r17: a(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(nf(X1,X2)) -> a#(X2) p2: a#(nf(X1,X2)) -> f#(a(X1),a(X2)) p3: f#(s(X),cs(Y,Z)) -> a#(Z) p4: a#(ns(X)) -> a#(X) and R consists of: r1: t(N) -> cs(r(q(N)),nt(ns(N))) r2: q(|0|()) -> |0|() r3: q(s(X)) -> s(p(q(X),d(X))) r4: d(|0|()) -> |0|() r5: d(s(X)) -> s(s(d(X))) r6: p(|0|(),X) -> X r7: p(X,|0|()) -> X r8: p(s(X),s(Y)) -> s(s(p(X,Y))) r9: f(|0|(),X) -> nil() r10: f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) r11: t(X) -> nt(X) r12: s(X) -> ns(X) r13: f(X1,X2) -> nf(X1,X2) r14: a(nt(X)) -> t(a(X)) r15: a(ns(X)) -> s(a(X)) r16: a(nf(X1,X2)) -> f(a(X1),a(X2)) r17: a(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a#_A(x1) = ((1,0),(1,0)) x1 + (0,3) nf_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (6,4) f#_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (5,1) a_A(x1) = ((1,0),(1,1)) x1 + (0,7) s_A(x1) = ((1,0),(1,0)) x1 + (0,8) cs_A(x1,x2) = ((1,0),(0,0)) x2 + (0,5) ns_A(x1) = ((1,0),(1,0)) x1 + (0,2) d_A(x1) = (0,9) |0|_A() = (0,1) p_A(x1,x2) = x1 + x2 + (0,9) q_A(x1) = (1,10) t_A(x1) = (5,11) r_A(x1) = (1,1) nt_A(x1) = (5,0) f_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (6,6) nil_A() = (0,0) precedence: a# = nf = f# = a = s = cs = ns = d = |0| = p = q = t = r = nt = f = nil partial status: pi(a#) = [] pi(nf) = [] pi(f#) = [] pi(a) = [] pi(s) = [] pi(cs) = [] pi(ns) = [] pi(d) = [] pi(|0|) = [] pi(p) = [] pi(q) = [] pi(t) = [] pi(r) = [] pi(nt) = [] pi(f) = [] pi(nil) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a#_A(x1) = (6,9) nf_A(x1,x2) = (0,0) f#_A(x1,x2) = ((1,0),(1,1)) x1 + (2,1) a_A(x1) = (3,0) s_A(x1) = (5,8) cs_A(x1,x2) = (1,0) ns_A(x1) = (0,0) d_A(x1) = (7,0) |0|_A() = (6,0) p_A(x1,x2) = x1 + ((1,0),(1,1)) x2 q_A(x1) = (6,0) t_A(x1) = (3,0) r_A(x1) = (0,0) nt_A(x1) = (1,1) f_A(x1,x2) = (2,1) nil_A() = (0,0) precedence: a > p > t = r > nt > d = q > s > ns > a# = f# = cs > nf = |0| = f = nil partial status: pi(a#) = [] pi(nf) = [] pi(f#) = [] pi(a) = [] pi(s) = [] pi(cs) = [] pi(ns) = [] pi(d) = [] pi(|0|) = [] pi(p) = [] pi(q) = [] pi(t) = [] pi(r) = [] pi(nt) = [] pi(f) = [] pi(nil) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(nf(X1,X2)) -> f#(a(X1),a(X2)) p2: f#(s(X),cs(Y,Z)) -> a#(Z) p3: a#(ns(X)) -> a#(X) and R consists of: r1: t(N) -> cs(r(q(N)),nt(ns(N))) r2: q(|0|()) -> |0|() r3: q(s(X)) -> s(p(q(X),d(X))) r4: d(|0|()) -> |0|() r5: d(s(X)) -> s(s(d(X))) r6: p(|0|(),X) -> X r7: p(X,|0|()) -> X r8: p(s(X),s(Y)) -> s(s(p(X,Y))) r9: f(|0|(),X) -> nil() r10: f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) r11: t(X) -> nt(X) r12: s(X) -> ns(X) r13: f(X1,X2) -> nf(X1,X2) r14: a(nt(X)) -> t(a(X)) r15: a(ns(X)) -> s(a(X)) r16: a(nf(X1,X2)) -> f(a(X1),a(X2)) r17: a(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(nf(X1,X2)) -> f#(a(X1),a(X2)) p2: f#(s(X),cs(Y,Z)) -> a#(Z) p3: a#(ns(X)) -> a#(X) and R consists of: r1: t(N) -> cs(r(q(N)),nt(ns(N))) r2: q(|0|()) -> |0|() r3: q(s(X)) -> s(p(q(X),d(X))) r4: d(|0|()) -> |0|() r5: d(s(X)) -> s(s(d(X))) r6: p(|0|(),X) -> X r7: p(X,|0|()) -> X r8: p(s(X),s(Y)) -> s(s(p(X,Y))) r9: f(|0|(),X) -> nil() r10: f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) r11: t(X) -> nt(X) r12: s(X) -> ns(X) r13: f(X1,X2) -> nf(X1,X2) r14: a(nt(X)) -> t(a(X)) r15: a(ns(X)) -> s(a(X)) r16: a(nf(X1,X2)) -> f(a(X1),a(X2)) r17: a(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a#_A(x1) = ((1,0),(0,0)) x1 + (0,8) nf_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (2,10) f#_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (1,1) a_A(x1) = x1 + (0,3) s_A(x1) = ((1,0),(0,0)) x1 + (0,12) cs_A(x1,x2) = ((1,0),(0,0)) x2 + (0,9) ns_A(x1) = ((1,0),(0,0)) x1 + (0,9) d_A(x1) = (0,13) |0|_A() = (0,1) p_A(x1,x2) = x1 + x2 + (0,13) q_A(x1) = x1 + (1,11) t_A(x1) = (3,10) r_A(x1) = ((1,0),(0,0)) x1 + (1,1) nt_A(x1) = (3,9) f_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (2,10) nil_A() = (0,0) precedence: a# = a > r > f > nf > d > |0| = nil > cs = p = q = t > f# > s = nt > ns partial status: pi(a#) = [] pi(nf) = [] pi(f#) = [1, 2] pi(a) = [1] pi(s) = [] pi(cs) = [] pi(ns) = [] pi(d) = [] pi(|0|) = [] pi(p) = [1, 2] pi(q) = [1] pi(t) = [] pi(r) = [] pi(nt) = [] pi(f) = [] pi(nil) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a#_A(x1) = (10,10) nf_A(x1,x2) = (15,13) f#_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (6,1) a_A(x1) = ((1,0),(1,0)) x1 + (2,2) s_A(x1) = (14,12) cs_A(x1,x2) = (11,11) ns_A(x1) = (13,1) d_A(x1) = (15,0) |0|_A() = (0,0) p_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (15,1) q_A(x1) = ((0,0),(1,0)) x1 + (16,0) t_A(x1) = (12,12) r_A(x1) = (0,0) nt_A(x1) = (11,1) f_A(x1,x2) = (16,14) nil_A() = (0,0) precedence: a = p = nt > t > a# = nf = f# = s = d = |0| = q = nil > r = f > cs = ns partial status: pi(a#) = [] pi(nf) = [] pi(f#) = [1, 2] pi(a) = [] pi(s) = [] pi(cs) = [] pi(ns) = [] pi(d) = [] pi(|0|) = [] pi(p) = [1] pi(q) = [] pi(t) = [] pi(r) = [] pi(nt) = [] pi(f) = [] pi(nil) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(ns(X)) -> a#(X) and R consists of: r1: t(N) -> cs(r(q(N)),nt(ns(N))) r2: q(|0|()) -> |0|() r3: q(s(X)) -> s(p(q(X),d(X))) r4: d(|0|()) -> |0|() r5: d(s(X)) -> s(s(d(X))) r6: p(|0|(),X) -> X r7: p(X,|0|()) -> X r8: p(s(X),s(Y)) -> s(s(p(X,Y))) r9: f(|0|(),X) -> nil() r10: f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) r11: t(X) -> nt(X) r12: s(X) -> ns(X) r13: f(X1,X2) -> nf(X1,X2) r14: a(nt(X)) -> t(a(X)) r15: a(ns(X)) -> s(a(X)) r16: a(nf(X1,X2)) -> f(a(X1),a(X2)) r17: a(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(ns(X)) -> a#(X) and R consists of: r1: t(N) -> cs(r(q(N)),nt(ns(N))) r2: q(|0|()) -> |0|() r3: q(s(X)) -> s(p(q(X),d(X))) r4: d(|0|()) -> |0|() r5: d(s(X)) -> s(s(d(X))) r6: p(|0|(),X) -> X r7: p(X,|0|()) -> X r8: p(s(X),s(Y)) -> s(s(p(X,Y))) r9: f(|0|(),X) -> nil() r10: f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) r11: t(X) -> nt(X) r12: s(X) -> ns(X) r13: f(X1,X2) -> nf(X1,X2) r14: a(nt(X)) -> t(a(X)) r15: a(ns(X)) -> s(a(X)) r16: a(nf(X1,X2)) -> f(a(X1),a(X2)) r17: a(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a#_A(x1) = ((1,0),(1,1)) x1 + (2,2) ns_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: a# = ns partial status: pi(a#) = [] pi(ns) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a#_A(x1) = ((1,0),(0,0)) x1 ns_A(x1) = (1,1) precedence: ns > a# partial status: pi(a#) = [] pi(ns) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: q#(s(X)) -> q#(X) and R consists of: r1: t(N) -> cs(r(q(N)),nt(ns(N))) r2: q(|0|()) -> |0|() r3: q(s(X)) -> s(p(q(X),d(X))) r4: d(|0|()) -> |0|() r5: d(s(X)) -> s(s(d(X))) r6: p(|0|(),X) -> X r7: p(X,|0|()) -> X r8: p(s(X),s(Y)) -> s(s(p(X,Y))) r9: f(|0|(),X) -> nil() r10: f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) r11: t(X) -> nt(X) r12: s(X) -> ns(X) r13: f(X1,X2) -> nf(X1,X2) r14: a(nt(X)) -> t(a(X)) r15: a(ns(X)) -> s(a(X)) r16: a(nf(X1,X2)) -> f(a(X1),a(X2)) r17: a(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: q#_A(x1) = ((1,0),(1,1)) x1 + (2,2) s_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: q# = s partial status: pi(q#) = [] pi(s) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: q#_A(x1) = ((1,0),(0,0)) x1 s_A(x1) = (1,1) precedence: s > q# partial status: pi(q#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: p#(s(X),s(Y)) -> p#(X,Y) and R consists of: r1: t(N) -> cs(r(q(N)),nt(ns(N))) r2: q(|0|()) -> |0|() r3: q(s(X)) -> s(p(q(X),d(X))) r4: d(|0|()) -> |0|() r5: d(s(X)) -> s(s(d(X))) r6: p(|0|(),X) -> X r7: p(X,|0|()) -> X r8: p(s(X),s(Y)) -> s(s(p(X,Y))) r9: f(|0|(),X) -> nil() r10: f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) r11: t(X) -> nt(X) r12: s(X) -> ns(X) r13: f(X1,X2) -> nf(X1,X2) r14: a(nt(X)) -> t(a(X)) r15: a(ns(X)) -> s(a(X)) r16: a(nf(X1,X2)) -> f(a(X1),a(X2)) r17: a(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: p#_A(x1,x2) = ((1,0),(0,0)) x1 s_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: p# > s partial status: pi(p#) = [] pi(s) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: p#_A(x1,x2) = (0,0) s_A(x1) = (1,1) precedence: p# = s partial status: pi(p#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: d#(s(X)) -> d#(X) and R consists of: r1: t(N) -> cs(r(q(N)),nt(ns(N))) r2: q(|0|()) -> |0|() r3: q(s(X)) -> s(p(q(X),d(X))) r4: d(|0|()) -> |0|() r5: d(s(X)) -> s(s(d(X))) r6: p(|0|(),X) -> X r7: p(X,|0|()) -> X r8: p(s(X),s(Y)) -> s(s(p(X,Y))) r9: f(|0|(),X) -> nil() r10: f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) r11: t(X) -> nt(X) r12: s(X) -> ns(X) r13: f(X1,X2) -> nf(X1,X2) r14: a(nt(X)) -> t(a(X)) r15: a(ns(X)) -> s(a(X)) r16: a(nf(X1,X2)) -> f(a(X1),a(X2)) r17: a(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: d#_A(x1) = ((1,0),(1,1)) x1 + (2,2) s_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: d# = s partial status: pi(d#) = [] pi(s) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: d#_A(x1) = ((1,0),(0,0)) x1 s_A(x1) = (1,1) precedence: s > d# partial status: pi(d#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.