YES We show the termination of the TRS R: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) active(from(X)) -> mark(cons(X,from(s(X)))) mark(|2nd|(X)) -> active(|2nd|(mark(X))) mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) |2nd|(mark(X)) -> |2nd|(X) |2nd|(active(X)) -> |2nd|(X) cons(mark(X1),X2) -> cons(X1,X2) cons(X1,mark(X2)) -> cons(X1,X2) cons(active(X1),X2) -> cons(X1,X2) cons(X1,active(X2)) -> cons(X1,X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(|2nd|(cons(X,cons(Y,Z)))) -> mark#(Y) p2: active#(from(X)) -> mark#(cons(X,from(s(X)))) p3: active#(from(X)) -> cons#(X,from(s(X))) p4: active#(from(X)) -> from#(s(X)) p5: active#(from(X)) -> s#(X) p6: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) p7: mark#(|2nd|(X)) -> |2nd|#(mark(X)) p8: mark#(|2nd|(X)) -> mark#(X) p9: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p10: mark#(cons(X1,X2)) -> cons#(mark(X1),X2) p11: mark#(cons(X1,X2)) -> mark#(X1) p12: mark#(from(X)) -> active#(from(mark(X))) p13: mark#(from(X)) -> from#(mark(X)) p14: mark#(from(X)) -> mark#(X) p15: mark#(s(X)) -> active#(s(mark(X))) p16: mark#(s(X)) -> s#(mark(X)) p17: mark#(s(X)) -> mark#(X) p18: |2nd|#(mark(X)) -> |2nd|#(X) p19: |2nd|#(active(X)) -> |2nd|#(X) p20: cons#(mark(X1),X2) -> cons#(X1,X2) p21: cons#(X1,mark(X2)) -> cons#(X1,X2) p22: cons#(active(X1),X2) -> cons#(X1,X2) p23: cons#(X1,active(X2)) -> cons#(X1,X2) p24: from#(mark(X)) -> from#(X) p25: from#(active(X)) -> from#(X) p26: s#(mark(X)) -> s#(X) p27: s#(active(X)) -> s#(X) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The estimated dependency graph contains the following SCCs: {p1, p2, p6, p8, p9, p11, p12, p14, p15, p17} {p20, p21, p22, p23} {p24, p25} {p26, p27} {p18, p19} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(|2nd|(cons(X,cons(Y,Z)))) -> mark#(Y) p2: mark#(s(X)) -> mark#(X) p3: mark#(s(X)) -> active#(s(mark(X))) p4: active#(from(X)) -> mark#(cons(X,from(s(X)))) p5: mark#(from(X)) -> mark#(X) p6: mark#(from(X)) -> active#(from(mark(X))) p7: mark#(cons(X1,X2)) -> mark#(X1) p8: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p9: mark#(|2nd|(X)) -> mark#(X) p10: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: active#_A(x1) = ((0,0),(1,0)) x1 + (4,1) |2nd|_A(x1) = (2,2) cons_A(x1,x2) = (1,0) mark#_A(x1) = (4,3) s_A(x1) = (1,4) mark_A(x1) = (3,1) from_A(x1) = (2,4) active_A(x1) = (3,1) precedence: cons > active# = mark# = s > |2nd| > from > mark = active partial status: pi(active#) = [] pi(|2nd|) = [] pi(cons) = [] pi(mark#) = [] pi(s) = [] pi(mark) = [] pi(from) = [] pi(active) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: active#_A(x1) = (2,2) |2nd|_A(x1) = (0,1) cons_A(x1,x2) = (3,3) mark#_A(x1) = (2,2) s_A(x1) = (1,1) mark_A(x1) = (4,0) from_A(x1) = (5,0) active_A(x1) = (4,0) precedence: |2nd| > from > active# = mark# > cons = mark = active > s partial status: pi(active#) = [] pi(|2nd|) = [] pi(cons) = [] pi(mark#) = [] pi(s) = [] pi(mark) = [] pi(from) = [] pi(active) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(|2nd|(cons(X,cons(Y,Z)))) -> mark#(Y) p2: mark#(s(X)) -> mark#(X) p3: active#(from(X)) -> mark#(cons(X,from(s(X)))) p4: mark#(from(X)) -> mark#(X) p5: mark#(from(X)) -> active#(from(mark(X))) p6: mark#(cons(X1,X2)) -> mark#(X1) p7: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p8: mark#(|2nd|(X)) -> mark#(X) p9: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(|2nd|(cons(X,cons(Y,Z)))) -> mark#(Y) p2: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) p3: active#(from(X)) -> mark#(cons(X,from(s(X)))) p4: mark#(|2nd|(X)) -> mark#(X) p5: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p6: mark#(cons(X1,X2)) -> mark#(X1) p7: mark#(from(X)) -> active#(from(mark(X))) p8: mark#(from(X)) -> mark#(X) p9: mark#(s(X)) -> mark#(X) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: active#_A(x1) = ((1,0),(0,0)) x1 + (1,1) |2nd|_A(x1) = (3,5) cons_A(x1,x2) = (2,5) mark#_A(x1) = (4,1) mark_A(x1) = (1,4) from_A(x1) = (3,3) s_A(x1) = (2,5) active_A(x1) = ((0,0),(1,0)) x1 + (1,1) precedence: from > cons > active# = |2nd| = mark# = mark = s = active partial status: pi(active#) = [] pi(|2nd|) = [] pi(cons) = [] pi(mark#) = [] pi(mark) = [] pi(from) = [] pi(s) = [] pi(active) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: active#_A(x1) = (0,2) |2nd|_A(x1) = (1,1) cons_A(x1,x2) = (1,1) mark#_A(x1) = (0,2) mark_A(x1) = (2,3) from_A(x1) = (0,0) s_A(x1) = (2,0) active_A(x1) = (2,3) precedence: |2nd| > mark = active > from > s > active# = cons = mark# partial status: pi(active#) = [] pi(|2nd|) = [] pi(cons) = [] pi(mark#) = [] pi(mark) = [] pi(from) = [] pi(s) = [] pi(active) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(|2nd|(cons(X,cons(Y,Z)))) -> mark#(Y) p2: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) p3: active#(from(X)) -> mark#(cons(X,from(s(X)))) p4: mark#(|2nd|(X)) -> mark#(X) p5: mark#(cons(X1,X2)) -> mark#(X1) p6: mark#(from(X)) -> active#(from(mark(X))) p7: mark#(from(X)) -> mark#(X) p8: mark#(s(X)) -> mark#(X) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(|2nd|(cons(X,cons(Y,Z)))) -> mark#(Y) p2: mark#(s(X)) -> mark#(X) p3: mark#(from(X)) -> mark#(X) p4: mark#(from(X)) -> active#(from(mark(X))) p5: active#(from(X)) -> mark#(cons(X,from(s(X)))) p6: mark#(cons(X1,X2)) -> mark#(X1) p7: mark#(|2nd|(X)) -> mark#(X) p8: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: active#_A(x1) = ((0,1),(0,0)) x1 + (1,2) |2nd|_A(x1) = ((1,0),(1,1)) x1 + (2,0) cons_A(x1,x2) = ((0,0),(1,1)) x1 + ((0,1),(0,0)) x2 + (4,0) mark#_A(x1) = ((0,1),(0,0)) x1 + (3,2) s_A(x1) = ((0,0),(0,1)) x1 + (5,3) from_A(x1) = ((0,1),(1,1)) x1 + (16,3) mark_A(x1) = x1 active_A(x1) = x1 precedence: from > cons > active# = |2nd| = mark > mark# = s > active partial status: pi(active#) = [] pi(|2nd|) = [] pi(cons) = [] pi(mark#) = [] pi(s) = [] pi(from) = [] pi(mark) = [1] pi(active) = [1] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: active#_A(x1) = (0,0) |2nd|_A(x1) = (0,1) cons_A(x1,x2) = (2,1) mark#_A(x1) = (0,0) s_A(x1) = (0,1) from_A(x1) = (0,0) mark_A(x1) = (1,2) active_A(x1) = (1,2) precedence: cons > |2nd| > active# = mark# = s = from = mark = active partial status: pi(active#) = [] pi(|2nd|) = [] pi(cons) = [] pi(mark#) = [] pi(s) = [] pi(from) = [] pi(mark) = [] pi(active) = [] The next rules are strictly ordered: p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(|2nd|(cons(X,cons(Y,Z)))) -> mark#(Y) p2: mark#(s(X)) -> mark#(X) p3: mark#(from(X)) -> mark#(X) p4: mark#(from(X)) -> active#(from(mark(X))) p5: active#(from(X)) -> mark#(cons(X,from(s(X)))) p6: mark#(cons(X1,X2)) -> mark#(X1) p7: mark#(|2nd|(X)) -> mark#(X) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(|2nd|(cons(X,cons(Y,Z)))) -> mark#(Y) p2: mark#(|2nd|(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(from(X)) -> active#(from(mark(X))) p5: active#(from(X)) -> mark#(cons(X,from(s(X)))) p6: mark#(from(X)) -> mark#(X) p7: mark#(s(X)) -> mark#(X) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: active#_A(x1) = x1 + (1,3) |2nd|_A(x1) = (2,5) cons_A(x1,x2) = (1,3) mark#_A(x1) = (3,4) from_A(x1) = (2,1) mark_A(x1) = (2,2) s_A(x1) = (1,3) active_A(x1) = ((1,0),(0,0)) x1 + (0,2) precedence: active# = |2nd| = cons = mark# = mark = active > from = s partial status: pi(active#) = [] pi(|2nd|) = [] pi(cons) = [] pi(mark#) = [] pi(from) = [] pi(mark) = [] pi(s) = [] pi(active) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: active#_A(x1) = (4,4) |2nd|_A(x1) = (1,0) cons_A(x1,x2) = (2,3) mark#_A(x1) = (4,4) from_A(x1) = (5,2) mark_A(x1) = (2,3) s_A(x1) = (3,1) active_A(x1) = (2,3) precedence: active# = cons = mark# = from = mark = s = active > |2nd| partial status: pi(active#) = [] pi(|2nd|) = [] pi(cons) = [] pi(mark#) = [] pi(from) = [] pi(mark) = [] pi(s) = [] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(|2nd|(X)) -> mark#(X) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(from(X)) -> active#(from(mark(X))) p4: active#(from(X)) -> mark#(cons(X,from(s(X)))) p5: mark#(from(X)) -> mark#(X) p6: mark#(s(X)) -> mark#(X) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(|2nd|(X)) -> mark#(X) p2: mark#(s(X)) -> mark#(X) p3: mark#(from(X)) -> mark#(X) p4: mark#(from(X)) -> active#(from(mark(X))) p5: active#(from(X)) -> mark#(cons(X,from(s(X)))) p6: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,1),(0,0)) x1 + (1,0) |2nd|_A(x1) = ((1,1),(0,0)) x1 + (2,1) s_A(x1) = ((0,0),(1,1)) x1 + (2,1) from_A(x1) = ((1,1),(0,0)) x1 active#_A(x1) = x1 + (1,0) mark_A(x1) = ((0,0),(1,1)) x1 cons_A(x1,x2) = ((0,0),(1,1)) x1 + ((0,1),(0,0)) x2 active_A(x1) = ((0,0),(1,1)) x1 precedence: mark# = |2nd| = s = from = active# = mark = cons = active partial status: pi(mark#) = [] pi(|2nd|) = [] pi(s) = [] pi(from) = [] pi(active#) = [] pi(mark) = [] pi(cons) = [] pi(active) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = (0,0) |2nd|_A(x1) = (0,0) s_A(x1) = (1,3) from_A(x1) = (3,1) active#_A(x1) = (0,0) mark_A(x1) = (2,2) cons_A(x1,x2) = (1,0) active_A(x1) = (2,2) precedence: s > |2nd| > mark = cons = active > mark# = from = active# partial status: pi(mark#) = [] pi(|2nd|) = [] pi(s) = [] pi(from) = [] pi(active#) = [] pi(mark) = [] pi(cons) = [] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(from(X)) -> mark#(X) p3: mark#(from(X)) -> active#(from(mark(X))) p4: active#(from(X)) -> mark#(cons(X,from(s(X)))) p5: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(from(X)) -> active#(from(mark(X))) p4: active#(from(X)) -> mark#(cons(X,from(s(X)))) p5: mark#(from(X)) -> mark#(X) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,1),(1,1)) x1 + (5,11) s_A(x1) = ((1,1),(0,0)) x1 + (2,18) cons_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,0),(0,0)) x2 + (4,1) from_A(x1) = ((0,0),(1,1)) x1 + (1,10) active#_A(x1) = ((0,1),(0,1)) x1 + (2,7) mark_A(x1) = ((1,1),(0,0)) x1 + (3,0) active_A(x1) = ((1,1),(0,0)) x1 |2nd|_A(x1) = ((1,1),(0,0)) x1 precedence: mark# = active# > cons > s > from = mark > active > |2nd| partial status: pi(mark#) = [] pi(s) = [] pi(cons) = [] pi(from) = [] pi(active#) = [] pi(mark) = [] pi(active) = [] pi(|2nd|) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = (4,2) s_A(x1) = (2,0) cons_A(x1,x2) = (1,0) from_A(x1) = (5,4) active#_A(x1) = (3,1) mark_A(x1) = (2,3) active_A(x1) = (2,3) |2nd|_A(x1) = (2,3) precedence: mark# = from = active# > mark > s = active > |2nd| > cons partial status: pi(mark#) = [] pi(s) = [] pi(cons) = [] pi(from) = [] pi(active#) = [] pi(mark) = [] pi(active) = [] pi(|2nd|) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(from(X)) -> active#(from(mark(X))) p4: mark#(from(X)) -> mark#(X) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The estimated dependency graph contains the following SCCs: {p1, p2, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(from(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = ((1,0),(1,0)) x1 + (2,2) s_A(x1) = x1 + (1,3) from_A(x1) = ((1,0),(0,0)) x1 + (3,1) cons_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (3,1) precedence: mark# = s = from = cons partial status: pi(mark#) = [] pi(s) = [] pi(from) = [] pi(cons) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = (0,0) s_A(x1) = ((1,0),(0,0)) x1 + (1,1) from_A(x1) = (1,1) cons_A(x1,x2) = x2 + (1,1) precedence: mark# = from > s = cons partial status: pi(mark#) = [] pi(s) = [] pi(from) = [] pi(cons) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(from(X)) -> mark#(X) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(from(X)) -> mark#(X) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = x1 + (1,2) s_A(x1) = x1 + (2,1) from_A(x1) = ((1,0),(1,1)) x1 + (2,1) precedence: from > mark# = s partial status: pi(mark#) = [1] pi(s) = [1] pi(from) = [1] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = ((1,0),(1,0)) x1 + (0,2) s_A(x1) = ((1,0),(0,0)) x1 + (1,1) from_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: mark# = s = from partial status: pi(mark#) = [] pi(s) = [] pi(from) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(X1,active(X2)) -> cons#(X1,X2) p3: cons#(active(X1),X2) -> cons#(X1,X2) p4: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: cons#_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (2,2) mark_A(x1) = ((1,0),(0,0)) x1 + (1,3) active_A(x1) = ((1,0),(0,0)) x1 + (3,1) precedence: cons# = mark = active partial status: pi(cons#) = [] pi(mark) = [] pi(active) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: cons#_A(x1,x2) = (0,0) mark_A(x1) = (1,1) active_A(x1) = (1,1) precedence: mark > cons# = active partial status: pi(cons#) = [] pi(mark) = [] pi(active) = [] The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: from#(mark(X)) -> from#(X) p2: from#(active(X)) -> from#(X) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: from#_A(x1) = x1 + (1,2) mark_A(x1) = x1 + (2,1) active_A(x1) = ((1,0),(1,1)) x1 + (2,1) precedence: from# = mark = active partial status: pi(from#) = [1] pi(mark) = [1] pi(active) = [1] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: from#_A(x1) = ((1,0),(1,0)) x1 + (0,2) mark_A(x1) = ((1,0),(0,0)) x1 + (1,1) active_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: from# = mark = active partial status: pi(from#) = [] pi(mark) = [] pi(active) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) p2: s#(active(X)) -> s#(X) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: s#_A(x1) = x1 + (1,2) mark_A(x1) = x1 + (2,1) active_A(x1) = ((1,0),(1,1)) x1 + (2,1) precedence: s# = mark > active partial status: pi(s#) = [1] pi(mark) = [1] pi(active) = [1] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: s#_A(x1) = ((1,0),(1,0)) x1 + (0,2) mark_A(x1) = ((1,0),(0,0)) x1 + (1,1) active_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: s# = mark = active partial status: pi(s#) = [] pi(mark) = [] pi(active) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: |2nd|#(mark(X)) -> |2nd|#(X) p2: |2nd|#(active(X)) -> |2nd|#(X) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: |2nd|#_A(x1) = x1 + (1,2) mark_A(x1) = x1 + (2,1) active_A(x1) = ((1,0),(1,1)) x1 + (2,1) precedence: active > |2nd|# = mark partial status: pi(|2nd|#) = [1] pi(mark) = [1] pi(active) = [1] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: |2nd|#_A(x1) = ((1,0),(1,0)) x1 + (0,2) mark_A(x1) = ((1,0),(0,0)) x1 + (1,1) active_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: |2nd|# = mark = active partial status: pi(|2nd|#) = [] pi(mark) = [] pi(active) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.