YES We show the termination of the TRS R: from(X) -> cons(X,n__from(s(X))) first(|0|(),Z) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) sel(|0|(),cons(X,Z)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) from(X) -> n__from(X) first(X1,X2) -> n__first(X1,X2) activate(n__from(X)) -> from(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: sel#(s(X),cons(Y,Z)) -> sel#(X,activate(Z)) p3: sel#(s(X),cons(Y,Z)) -> activate#(Z) p4: activate#(n__from(X)) -> from#(X) p5: activate#(n__first(X1,X2)) -> first#(X1,X2) and R consists of: r1: from(X) -> cons(X,n__from(s(X))) r2: first(|0|(),Z) -> nil() r3: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r4: sel(|0|(),cons(X,Z)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: from(X) -> n__from(X) r7: first(X1,X2) -> n__first(X1,X2) r8: activate(n__from(X)) -> from(X) r9: activate(n__first(X1,X2)) -> first(X1,X2) r10: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2} {p1, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sel#(s(X),cons(Y,Z)) -> sel#(X,activate(Z)) and R consists of: r1: from(X) -> cons(X,n__from(s(X))) r2: first(|0|(),Z) -> nil() r3: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r4: sel(|0|(),cons(X,Z)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: from(X) -> n__from(X) r7: first(X1,X2) -> n__first(X1,X2) r8: activate(n__from(X)) -> from(X) r9: activate(n__first(X1,X2)) -> first(X1,X2) r10: activate(X) -> X The set of usable rules consists of r1, r2, r3, r6, r7, r8, r9, r10 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: sel#_A(x1,x2) = ((1,0),(1,1)) x1 + (2,1) s_A(x1) = ((1,0),(1,1)) x1 + (3,2) cons_A(x1,x2) = ((1,0),(0,0)) x2 + (1,14) activate_A(x1) = ((1,0),(1,1)) x1 + (6,7) from_A(x1) = ((1,0),(0,0)) x1 + (6,15) n__from_A(x1) = ((1,0),(0,0)) x1 + (1,16) first_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (5,1) |0|_A() = (2,2) nil_A() = (1,1) n__first_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (1,0) precedence: sel# = s = cons = activate = from = n__from = first = |0| = nil = n__first partial status: pi(sel#) = [] pi(s) = [] pi(cons) = [] pi(activate) = [] pi(from) = [] pi(n__from) = [] pi(first) = [] pi(|0|) = [] pi(nil) = [] pi(n__first) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: sel#_A(x1,x2) = x1 s_A(x1) = ((1,0),(1,1)) x1 + (3,3) cons_A(x1,x2) = (0,1) activate_A(x1) = ((1,0),(0,0)) x1 + (5,4) from_A(x1) = (2,2) n__from_A(x1) = (1,1) first_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (10,5) |0|_A() = (1,1) nil_A() = (0,0) n__first_A(x1,x2) = ((0,0),(1,0)) x2 + (4,4) precedence: activate > first > cons = from > n__first > sel# = s = n__from = |0| = nil partial status: pi(sel#) = [] pi(s) = [] pi(cons) = [] pi(activate) = [] pi(from) = [] pi(n__from) = [] pi(first) = [] pi(|0|) = [] pi(nil) = [] pi(n__first) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: activate#(n__first(X1,X2)) -> first#(X1,X2) and R consists of: r1: from(X) -> cons(X,n__from(s(X))) r2: first(|0|(),Z) -> nil() r3: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r4: sel(|0|(),cons(X,Z)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: from(X) -> n__from(X) r7: first(X1,X2) -> n__first(X1,X2) r8: activate(n__from(X)) -> from(X) r9: activate(n__first(X1,X2)) -> first(X1,X2) r10: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: first#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (1,1) s_A(x1) = ((1,0),(1,1)) x1 + (1,2) cons_A(x1,x2) = x1 + x2 + (3,2) activate#_A(x1) = ((1,0),(1,1)) x1 + (2,1) n__first_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (2,2) precedence: n__first > first# = s = cons = activate# partial status: pi(first#) = [2] pi(s) = [1] pi(cons) = [1, 2] pi(activate#) = [1] pi(n__first) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: first#_A(x1,x2) = (0,0) s_A(x1) = x1 + (1,1) cons_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (1,1) activate#_A(x1) = (0,0) n__first_A(x1,x2) = (1,1) precedence: n__first > s > cons = activate# > first# partial status: pi(first#) = [] pi(s) = [] pi(cons) = [] pi(activate#) = [] pi(n__first) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.