YES We show the termination of the TRS R: a__fst(|0|(),Z) -> nil() a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) a__from(X) -> cons(mark(X),from(s(X))) a__add(|0|(),X) -> mark(X) a__add(s(X),Y) -> s(add(X,Y)) a__len(nil()) -> |0|() a__len(cons(X,Z)) -> s(len(Z)) mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) mark(len(X)) -> a__len(mark(X)) mark(|0|()) -> |0|() mark(s(X)) -> s(X) mark(nil()) -> nil() mark(cons(X1,X2)) -> cons(mark(X1),X2) a__fst(X1,X2) -> fst(X1,X2) a__from(X) -> from(X) a__add(X1,X2) -> add(X1,X2) a__len(X) -> len(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__fst#(s(X),cons(Y,Z)) -> mark#(Y) p2: a__from#(X) -> mark#(X) p3: a__add#(|0|(),X) -> mark#(X) p4: mark#(fst(X1,X2)) -> a__fst#(mark(X1),mark(X2)) p5: mark#(fst(X1,X2)) -> mark#(X1) p6: mark#(fst(X1,X2)) -> mark#(X2) p7: mark#(from(X)) -> a__from#(mark(X)) p8: mark#(from(X)) -> mark#(X) p9: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p10: mark#(add(X1,X2)) -> mark#(X1) p11: mark#(add(X1,X2)) -> mark#(X2) p12: mark#(len(X)) -> a__len#(mark(X)) p13: mark#(len(X)) -> mark#(X) p14: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__fst#(s(X),cons(Y,Z)) -> mark#(Y) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(len(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> mark#(X2) p5: mark#(add(X1,X2)) -> mark#(X1) p6: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p7: a__add#(|0|(),X) -> mark#(X) p8: mark#(from(X)) -> mark#(X) p9: mark#(from(X)) -> a__from#(mark(X)) p10: a__from#(X) -> mark#(X) p11: mark#(fst(X1,X2)) -> mark#(X2) p12: mark#(fst(X1,X2)) -> mark#(X1) p13: mark#(fst(X1,X2)) -> a__fst#(mark(X1),mark(X2)) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__fst#_A(x1,x2) = ((0,0),(1,0)) x2 + (7,3) s_A(x1) = (5,1) cons_A(x1,x2) = ((1,0),(0,0)) x1 + (8,0) mark#_A(x1) = ((0,0),(1,0)) x1 + (7,0) len_A(x1) = ((1,0),(1,0)) x1 + (1,4) add_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(0,0)) x2 + (4,4) a__add#_A(x1,x2) = ((0,0),(1,0)) x2 + (7,1) mark_A(x1) = ((1,0),(1,1)) x1 + (0,3) |0|_A() = (1,2) from_A(x1) = ((1,0),(0,0)) x1 + (9,1) a__from#_A(x1) = ((0,0),(1,0)) x1 + (7,2) fst_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (6,2) a__fst_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (6,3) nil_A() = (2,1) a__from_A(x1) = ((1,0),(0,0)) x1 + (9,4) a__add_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(0,0)) x2 + (4,5) a__len_A(x1) = ((1,0),(1,0)) x1 + (1,8) precedence: a__fst# = s = cons = mark# = len = add = a__add# = mark = |0| = from = a__from# = fst = a__fst = nil = a__from = a__add = a__len partial status: pi(a__fst#) = [] pi(s) = [] pi(cons) = [] pi(mark#) = [] pi(len) = [] pi(add) = [] pi(a__add#) = [] pi(mark) = [] pi(|0|) = [] pi(from) = [] pi(a__from#) = [] pi(fst) = [] pi(a__fst) = [] pi(nil) = [] pi(a__from) = [] pi(a__add) = [] pi(a__len) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__fst#_A(x1,x2) = (4,7) s_A(x1) = (3,0) cons_A(x1,x2) = (1,0) mark#_A(x1) = (4,7) len_A(x1) = (3,0) add_A(x1,x2) = (1,1) a__add#_A(x1,x2) = (2,8) mark_A(x1) = (3,6) |0|_A() = (1,0) from_A(x1) = (0,2) a__from#_A(x1) = (4,7) fst_A(x1,x2) = ((0,0),(1,0)) x2 a__fst_A(x1,x2) = (4,5) nil_A() = (1,0) a__from_A(x1) = (2,1) a__add_A(x1,x2) = ((0,0),(1,0)) x1 + (3,2) a__len_A(x1) = (3,1) precedence: mark = a__add > add > a__fst = nil > len = |0| = a__len > from = a__from > cons = fst > a__fst# = mark# = a__from# > a__add# > s partial status: pi(a__fst#) = [] pi(s) = [] pi(cons) = [] pi(mark#) = [] pi(len) = [] pi(add) = [] pi(a__add#) = [] pi(mark) = [] pi(|0|) = [] pi(from) = [] pi(a__from#) = [] pi(fst) = [] pi(a__fst) = [] pi(nil) = [] pi(a__from) = [] pi(a__add) = [] pi(a__len) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__fst#(s(X),cons(Y,Z)) -> mark#(Y) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(len(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> mark#(X2) p5: mark#(add(X1,X2)) -> mark#(X1) p6: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p7: mark#(from(X)) -> mark#(X) p8: mark#(from(X)) -> a__from#(mark(X)) p9: a__from#(X) -> mark#(X) p10: mark#(fst(X1,X2)) -> mark#(X2) p11: mark#(fst(X1,X2)) -> mark#(X1) p12: mark#(fst(X1,X2)) -> a__fst#(mark(X1),mark(X2)) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__fst#(s(X),cons(Y,Z)) -> mark#(Y) p2: mark#(fst(X1,X2)) -> a__fst#(mark(X1),mark(X2)) p3: mark#(fst(X1,X2)) -> mark#(X1) p4: mark#(fst(X1,X2)) -> mark#(X2) p5: mark#(from(X)) -> a__from#(mark(X)) p6: a__from#(X) -> mark#(X) p7: mark#(from(X)) -> mark#(X) p8: mark#(add(X1,X2)) -> mark#(X1) p9: mark#(add(X1,X2)) -> mark#(X2) p10: mark#(len(X)) -> mark#(X) p11: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__fst#_A(x1,x2) = x1 + x2 + (9,5) s_A(x1) = (1,0) cons_A(x1,x2) = x1 + (3,12) mark#_A(x1) = x1 + (2,17) fst_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (7,0) mark_A(x1) = ((1,0),(1,1)) x1 + (0,6) from_A(x1) = ((1,0),(1,1)) x1 + (4,16) a__from#_A(x1) = x1 + (3,18) add_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (8,7) len_A(x1) = x1 + (4,7) a__fst_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (7,1) |0|_A() = (1,9) nil_A() = (2,1) a__from_A(x1) = ((1,0),(1,1)) x1 + (4,19) a__add_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (8,8) a__len_A(x1) = x1 + (4,8) precedence: nil > a__from > from = a__add > s > a__len > len > a__fst# = mark# = a__from# > cons = mark = a__fst > |0| > fst = add partial status: pi(a__fst#) = [1, 2] pi(s) = [] pi(cons) = [1] pi(mark#) = [1] pi(fst) = [1, 2] pi(mark) = [1] pi(from) = [1] pi(a__from#) = [1] pi(add) = [1, 2] pi(len) = [1] pi(a__fst) = [2] pi(|0|) = [] pi(nil) = [] pi(a__from) = [1] pi(a__add) = [1, 2] pi(a__len) = [1] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__fst#_A(x1,x2) = ((1,0),(1,1)) x1 + (1,1) s_A(x1) = (3,2) cons_A(x1,x2) = ((1,0),(1,0)) x1 + (2,8) mark#_A(x1) = ((1,0),(1,1)) x1 + (1,7) fst_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (25,1) mark_A(x1) = ((1,0),(1,1)) x1 + (12,9) from_A(x1) = ((1,0),(1,1)) x1 + (14,21) a__from#_A(x1) = ((1,0),(1,0)) x1 + (2,8) add_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (11,1) len_A(x1) = x1 + (13,6) a__fst_A(x1,x2) = ((1,0),(1,0)) x2 + (13,19) |0|_A() = (1,2) nil_A() = (0,1) a__from_A(x1) = ((1,0),(1,1)) x1 + (14,22) a__add_A(x1,x2) = ((0,0),(1,0)) x2 + (23,9) a__len_A(x1) = x1 + (14,7) precedence: a__fst > nil > s = |0| = a__len > from > fst > a__fst# = cons = mark# = mark = a__from# = len = a__add > a__from > add partial status: pi(a__fst#) = [] pi(s) = [] pi(cons) = [] pi(mark#) = [1] pi(fst) = [1, 2] pi(mark) = [1] pi(from) = [] pi(a__from#) = [] pi(add) = [] pi(len) = [] pi(a__fst) = [] pi(|0|) = [] pi(nil) = [] pi(a__from) = [] pi(a__add) = [] pi(a__len) = [1] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11 We remove them from the problem. Then no dependency pair remains.