YES We show the termination of the TRS R: a__f(g(X),Y) -> a__f(mark(X),f(g(X),Y)) mark(f(X1,X2)) -> a__f(mark(X1),X2) mark(g(X)) -> g(mark(X)) a__f(X1,X2) -> f(X1,X2) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(g(X),Y) -> a__f#(mark(X),f(g(X),Y)) p2: a__f#(g(X),Y) -> mark#(X) p3: mark#(f(X1,X2)) -> a__f#(mark(X1),X2) p4: mark#(f(X1,X2)) -> mark#(X1) p5: mark#(g(X)) -> mark#(X) and R consists of: r1: a__f(g(X),Y) -> a__f(mark(X),f(g(X),Y)) r2: mark(f(X1,X2)) -> a__f(mark(X1),X2) r3: mark(g(X)) -> g(mark(X)) r4: a__f(X1,X2) -> f(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(g(X),Y) -> a__f#(mark(X),f(g(X),Y)) p2: a__f#(g(X),Y) -> mark#(X) p3: mark#(g(X)) -> mark#(X) p4: mark#(f(X1,X2)) -> mark#(X1) p5: mark#(f(X1,X2)) -> a__f#(mark(X1),X2) and R consists of: r1: a__f(g(X),Y) -> a__f(mark(X),f(g(X),Y)) r2: mark(f(X1,X2)) -> a__f(mark(X1),X2) r3: mark(g(X)) -> g(mark(X)) r4: a__f(X1,X2) -> f(X1,X2) The set of usable rules consists of r1, r2, r3, r4 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__f#_A(x1,x2) = x1 + (0,2) g_A(x1) = ((1,0),(1,1)) x1 + (5,2) mark_A(x1) = ((1,0),(1,1)) x1 + (4,1) f_A(x1,x2) = x1 + (3,0) mark#_A(x1) = x1 + (2,0) a__f_A(x1,x2) = x1 + (3,2) precedence: g = mark > f = a__f > mark# > a__f# partial status: pi(a__f#) = [1] pi(g) = [1] pi(mark) = [1] pi(f) = [] pi(mark#) = [1] pi(a__f) = [1] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__f#_A(x1,x2) = ((1,0),(0,0)) x1 + (0,1) g_A(x1) = ((0,0),(1,0)) x1 + (4,0) mark_A(x1) = x1 + (3,4) f_A(x1,x2) = (1,0) mark#_A(x1) = (0,0) a__f_A(x1,x2) = (2,1) precedence: mark > g > a__f > a__f# = f = mark# partial status: pi(a__f#) = [] pi(g) = [] pi(mark) = [] pi(f) = [] pi(mark#) = [] pi(a__f) = [] The next rules are strictly ordered: p1, p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(g(X),Y) -> mark#(X) p2: mark#(g(X)) -> mark#(X) p3: mark#(f(X1,X2)) -> mark#(X1) and R consists of: r1: a__f(g(X),Y) -> a__f(mark(X),f(g(X),Y)) r2: mark(f(X1,X2)) -> a__f(mark(X1),X2) r3: mark(g(X)) -> g(mark(X)) r4: a__f(X1,X2) -> f(X1,X2) The estimated dependency graph contains the following SCCs: {p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(g(X)) -> mark#(X) p2: mark#(f(X1,X2)) -> mark#(X1) and R consists of: r1: a__f(g(X),Y) -> a__f(mark(X),f(g(X),Y)) r2: mark(f(X1,X2)) -> a__f(mark(X1),X2) r3: mark(g(X)) -> g(mark(X)) r4: a__f(X1,X2) -> f(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = ((1,0),(1,1)) x1 + (2,2) g_A(x1) = x1 + (1,3) f_A(x1,x2) = x1 + x2 + (3,1) precedence: g = f > mark# partial status: pi(mark#) = [1] pi(g) = [1] pi(f) = [1, 2] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = (0,0) g_A(x1) = (1,1) f_A(x1,x2) = x2 + (1,1) precedence: f > mark# = g partial status: pi(mark#) = [] pi(g) = [] pi(f) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X1,X2)) -> mark#(X1) and R consists of: r1: a__f(g(X),Y) -> a__f(mark(X),f(g(X),Y)) r2: mark(f(X1,X2)) -> a__f(mark(X1),X2) r3: mark(g(X)) -> g(mark(X)) r4: a__f(X1,X2) -> f(X1,X2) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X1,X2)) -> mark#(X1) and R consists of: r1: a__f(g(X),Y) -> a__f(mark(X),f(g(X),Y)) r2: mark(f(X1,X2)) -> a__f(mark(X1),X2) r3: mark(g(X)) -> g(mark(X)) r4: a__f(X1,X2) -> f(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = x1 + (1,2) f_A(x1,x2) = ((1,0),(0,0)) x1 + (2,1) precedence: mark# > f partial status: pi(mark#) = [1] pi(f) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = (0,0) f_A(x1,x2) = (1,1) precedence: mark# > f partial status: pi(mark#) = [] pi(f) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.