YES We show the termination of the TRS R: a__2nd(cons1(X,cons(Y,Z))) -> mark(Y) a__2nd(cons(X,X1)) -> a__2nd(cons1(mark(X),mark(X1))) a__from(X) -> cons(mark(X),from(s(X))) mark(|2nd|(X)) -> a__2nd(mark(X)) mark(from(X)) -> a__from(mark(X)) mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(s(X)) -> s(mark(X)) mark(cons1(X1,X2)) -> cons1(mark(X1),mark(X2)) a__2nd(X) -> |2nd|(X) a__from(X) -> from(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__2nd#(cons1(X,cons(Y,Z))) -> mark#(Y) p2: a__2nd#(cons(X,X1)) -> a__2nd#(cons1(mark(X),mark(X1))) p3: a__2nd#(cons(X,X1)) -> mark#(X) p4: a__2nd#(cons(X,X1)) -> mark#(X1) p5: a__from#(X) -> mark#(X) p6: mark#(|2nd|(X)) -> a__2nd#(mark(X)) p7: mark#(|2nd|(X)) -> mark#(X) p8: mark#(from(X)) -> a__from#(mark(X)) p9: mark#(from(X)) -> mark#(X) p10: mark#(cons(X1,X2)) -> mark#(X1) p11: mark#(s(X)) -> mark#(X) p12: mark#(cons1(X1,X2)) -> mark#(X1) p13: mark#(cons1(X1,X2)) -> mark#(X2) and R consists of: r1: a__2nd(cons1(X,cons(Y,Z))) -> mark(Y) r2: a__2nd(cons(X,X1)) -> a__2nd(cons1(mark(X),mark(X1))) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: mark(|2nd|(X)) -> a__2nd(mark(X)) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(cons(X1,X2)) -> cons(mark(X1),X2) r7: mark(s(X)) -> s(mark(X)) r8: mark(cons1(X1,X2)) -> cons1(mark(X1),mark(X2)) r9: a__2nd(X) -> |2nd|(X) r10: a__from(X) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__2nd#(cons1(X,cons(Y,Z))) -> mark#(Y) p2: mark#(cons1(X1,X2)) -> mark#(X2) p3: mark#(cons1(X1,X2)) -> mark#(X1) p4: mark#(s(X)) -> mark#(X) p5: mark#(cons(X1,X2)) -> mark#(X1) p6: mark#(from(X)) -> mark#(X) p7: mark#(from(X)) -> a__from#(mark(X)) p8: a__from#(X) -> mark#(X) p9: mark#(|2nd|(X)) -> mark#(X) p10: mark#(|2nd|(X)) -> a__2nd#(mark(X)) p11: a__2nd#(cons(X,X1)) -> mark#(X1) p12: a__2nd#(cons(X,X1)) -> mark#(X) p13: a__2nd#(cons(X,X1)) -> a__2nd#(cons1(mark(X),mark(X1))) and R consists of: r1: a__2nd(cons1(X,cons(Y,Z))) -> mark(Y) r2: a__2nd(cons(X,X1)) -> a__2nd(cons1(mark(X),mark(X1))) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: mark(|2nd|(X)) -> a__2nd(mark(X)) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(cons(X1,X2)) -> cons(mark(X1),X2) r7: mark(s(X)) -> s(mark(X)) r8: mark(cons1(X1,X2)) -> cons1(mark(X1),mark(X2)) r9: a__2nd(X) -> |2nd|(X) r10: a__from(X) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__2nd#_A(x1) = ((1,1),(0,0)) x1 + (2,6) cons1_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (4,1) cons_A(x1,x2) = ((0,0),(1,1)) x1 + ((0,1),(0,0)) x2 + (0,6) mark#_A(x1) = ((0,1),(0,0)) x1 + (3,6) s_A(x1) = ((0,0),(1,1)) x1 + (1,1) from_A(x1) = ((1,1),(1,1)) x1 + (9,6) a__from#_A(x1) = ((0,1),(0,0)) x1 + (9,6) mark_A(x1) = x1 |2nd|_A(x1) = ((1,1),(1,1)) x1 + (1,2) a__2nd_A(x1) = ((1,1),(1,1)) x1 + (1,2) a__from_A(x1) = ((1,1),(1,1)) x1 + (9,6) precedence: a__2nd# = cons1 = cons = mark# = s = from = a__from# = mark = |2nd| = a__2nd = a__from partial status: pi(a__2nd#) = [] pi(cons1) = [] pi(cons) = [] pi(mark#) = [] pi(s) = [] pi(from) = [] pi(a__from#) = [] pi(mark) = [] pi(|2nd|) = [] pi(a__2nd) = [] pi(a__from) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__2nd#_A(x1) = x1 cons1_A(x1,x2) = (3,1) cons_A(x1,x2) = (4,2) mark#_A(x1) = (2,1) s_A(x1) = (3,1) from_A(x1) = (5,1) a__from#_A(x1) = (2,1) mark_A(x1) = ((1,1),(0,1)) x1 + (1,1) |2nd|_A(x1) = (3,2) a__2nd_A(x1) = (5,3) a__from_A(x1) = (5,1) precedence: a__2nd > from = mark = a__from > s > cons1 = cons > mark# = a__from# > a__2nd# > |2nd| partial status: pi(a__2nd#) = [1] pi(cons1) = [] pi(cons) = [] pi(mark#) = [] pi(s) = [] pi(from) = [] pi(a__from#) = [] pi(mark) = [1] pi(|2nd|) = [] pi(a__2nd) = [] pi(a__from) = [] The next rules are strictly ordered: p1, p10, p11, p12 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(cons1(X1,X2)) -> mark#(X2) p2: mark#(cons1(X1,X2)) -> mark#(X1) p3: mark#(s(X)) -> mark#(X) p4: mark#(cons(X1,X2)) -> mark#(X1) p5: mark#(from(X)) -> mark#(X) p6: mark#(from(X)) -> a__from#(mark(X)) p7: a__from#(X) -> mark#(X) p8: mark#(|2nd|(X)) -> mark#(X) p9: a__2nd#(cons(X,X1)) -> a__2nd#(cons1(mark(X),mark(X1))) and R consists of: r1: a__2nd(cons1(X,cons(Y,Z))) -> mark(Y) r2: a__2nd(cons(X,X1)) -> a__2nd(cons1(mark(X),mark(X1))) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: mark(|2nd|(X)) -> a__2nd(mark(X)) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(cons(X1,X2)) -> cons(mark(X1),X2) r7: mark(s(X)) -> s(mark(X)) r8: mark(cons1(X1,X2)) -> cons1(mark(X1),mark(X2)) r9: a__2nd(X) -> |2nd|(X) r10: a__from(X) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(cons1(X1,X2)) -> mark#(X2) p2: mark#(|2nd|(X)) -> mark#(X) p3: mark#(from(X)) -> a__from#(mark(X)) p4: a__from#(X) -> mark#(X) p5: mark#(from(X)) -> mark#(X) p6: mark#(cons(X1,X2)) -> mark#(X1) p7: mark#(s(X)) -> mark#(X) p8: mark#(cons1(X1,X2)) -> mark#(X1) and R consists of: r1: a__2nd(cons1(X,cons(Y,Z))) -> mark(Y) r2: a__2nd(cons(X,X1)) -> a__2nd(cons1(mark(X),mark(X1))) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: mark(|2nd|(X)) -> a__2nd(mark(X)) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(cons(X1,X2)) -> cons(mark(X1),X2) r7: mark(s(X)) -> s(mark(X)) r8: mark(cons1(X1,X2)) -> cons1(mark(X1),mark(X2)) r9: a__2nd(X) -> |2nd|(X) r10: a__from(X) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,0),(0,0)) x1 cons1_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (1,0) |2nd|_A(x1) = ((1,1),(1,1)) x1 + (1,1) from_A(x1) = ((1,1),(1,0)) x1 + (3,6) a__from#_A(x1) = ((1,0),(0,0)) x1 mark_A(x1) = x1 cons_A(x1,x2) = ((1,1),(0,0)) x1 + ((0,0),(1,0)) x2 + (2,1) s_A(x1) = ((1,0),(0,0)) x1 + (1,1) a__2nd_A(x1) = ((1,1),(1,1)) x1 + (1,1) a__from_A(x1) = ((1,1),(1,0)) x1 + (3,6) precedence: mark# = cons1 = |2nd| = from = a__from# = mark = cons = s = a__2nd = a__from partial status: pi(mark#) = [] pi(cons1) = [] pi(|2nd|) = [] pi(from) = [] pi(a__from#) = [] pi(mark) = [] pi(cons) = [] pi(s) = [] pi(a__2nd) = [] pi(a__from) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,0)) x1 + (2,0) cons1_A(x1,x2) = x1 + x2 + (3,11) |2nd|_A(x1) = ((0,0),(0,1)) x1 + (1,1) from_A(x1) = ((0,1),(0,1)) x1 + (6,0) a__from#_A(x1) = ((0,1),(0,0)) x1 + (2,0) mark_A(x1) = ((0,1),(0,1)) x1 + (7,0) cons_A(x1,x2) = (3,0) s_A(x1) = ((0,0),(0,1)) x1 + (7,0) a__2nd_A(x1) = x1 + (1,1) a__from_A(x1) = ((0,1),(0,1)) x1 + (6,0) precedence: mark > s = a__from > mark# = cons1 = |2nd| = from = a__from# = cons = a__2nd partial status: pi(mark#) = [] pi(cons1) = [1] pi(|2nd|) = [] pi(from) = [] pi(a__from#) = [] pi(mark) = [] pi(cons) = [] pi(s) = [] pi(a__2nd) = [1] pi(a__from) = [] The next rules are strictly ordered: p1, p6, p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(|2nd|(X)) -> mark#(X) p2: mark#(from(X)) -> a__from#(mark(X)) p3: a__from#(X) -> mark#(X) p4: mark#(from(X)) -> mark#(X) p5: mark#(s(X)) -> mark#(X) and R consists of: r1: a__2nd(cons1(X,cons(Y,Z))) -> mark(Y) r2: a__2nd(cons(X,X1)) -> a__2nd(cons1(mark(X),mark(X1))) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: mark(|2nd|(X)) -> a__2nd(mark(X)) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(cons(X1,X2)) -> cons(mark(X1),X2) r7: mark(s(X)) -> s(mark(X)) r8: mark(cons1(X1,X2)) -> cons1(mark(X1),mark(X2)) r9: a__2nd(X) -> |2nd|(X) r10: a__from(X) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(|2nd|(X)) -> mark#(X) p2: mark#(s(X)) -> mark#(X) p3: mark#(from(X)) -> mark#(X) p4: mark#(from(X)) -> a__from#(mark(X)) p5: a__from#(X) -> mark#(X) and R consists of: r1: a__2nd(cons1(X,cons(Y,Z))) -> mark(Y) r2: a__2nd(cons(X,X1)) -> a__2nd(cons1(mark(X),mark(X1))) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: mark(|2nd|(X)) -> a__2nd(mark(X)) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(cons(X1,X2)) -> cons(mark(X1),X2) r7: mark(s(X)) -> s(mark(X)) r8: mark(cons1(X1,X2)) -> cons1(mark(X1),mark(X2)) r9: a__2nd(X) -> |2nd|(X) r10: a__from(X) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,1)) x1 |2nd|_A(x1) = ((0,1),(0,1)) x1 + (1,2) s_A(x1) = x1 + (1,0) from_A(x1) = ((1,1),(1,1)) x1 + (2,5) a__from#_A(x1) = ((1,1),(0,1)) x1 + (1,0) mark_A(x1) = x1 a__2nd_A(x1) = ((0,1),(0,1)) x1 + (1,2) cons1_A(x1,x2) = ((1,0),(1,0)) x2 + (0,1) cons_A(x1,x2) = ((1,1),(0,0)) x1 + ((0,0),(1,0)) x2 + (1,2) a__from_A(x1) = ((1,1),(1,1)) x1 + (2,5) precedence: mark# = |2nd| = s = from = a__from# = mark = a__2nd = cons1 = cons = a__from partial status: pi(mark#) = [] pi(|2nd|) = [] pi(s) = [] pi(from) = [] pi(a__from#) = [] pi(mark) = [] pi(a__2nd) = [] pi(cons1) = [] pi(cons) = [] pi(a__from) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = (2,2) |2nd|_A(x1) = (2,2) s_A(x1) = ((1,0),(0,0)) x1 + (0,2) from_A(x1) = (2,2) a__from#_A(x1) = (2,2) mark_A(x1) = (2,2) a__2nd_A(x1) = (2,2) cons1_A(x1,x2) = (1,2) cons_A(x1,x2) = (0,1) a__from_A(x1) = (2,2) precedence: mark > a__2nd > |2nd| = s = a__from > cons > from > mark# = a__from# = cons1 partial status: pi(mark#) = [] pi(|2nd|) = [] pi(s) = [] pi(from) = [] pi(a__from#) = [] pi(mark) = [] pi(a__2nd) = [] pi(cons1) = [] pi(cons) = [] pi(a__from) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(|2nd|(X)) -> mark#(X) p2: mark#(s(X)) -> mark#(X) p3: mark#(from(X)) -> a__from#(mark(X)) p4: a__from#(X) -> mark#(X) and R consists of: r1: a__2nd(cons1(X,cons(Y,Z))) -> mark(Y) r2: a__2nd(cons(X,X1)) -> a__2nd(cons1(mark(X),mark(X1))) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: mark(|2nd|(X)) -> a__2nd(mark(X)) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(cons(X1,X2)) -> cons(mark(X1),X2) r7: mark(s(X)) -> s(mark(X)) r8: mark(cons1(X1,X2)) -> cons1(mark(X1),mark(X2)) r9: a__2nd(X) -> |2nd|(X) r10: a__from(X) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(|2nd|(X)) -> mark#(X) p2: mark#(from(X)) -> a__from#(mark(X)) p3: a__from#(X) -> mark#(X) p4: mark#(s(X)) -> mark#(X) and R consists of: r1: a__2nd(cons1(X,cons(Y,Z))) -> mark(Y) r2: a__2nd(cons(X,X1)) -> a__2nd(cons1(mark(X),mark(X1))) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: mark(|2nd|(X)) -> a__2nd(mark(X)) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(cons(X1,X2)) -> cons(mark(X1),X2) r7: mark(s(X)) -> s(mark(X)) r8: mark(cons1(X1,X2)) -> cons1(mark(X1),mark(X2)) r9: a__2nd(X) -> |2nd|(X) r10: a__from(X) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,0)) x1 + (1,6) |2nd|_A(x1) = ((0,1),(0,1)) x1 + (2,6) from_A(x1) = ((1,1),(1,1)) x1 + (3,5) a__from#_A(x1) = ((1,1),(0,0)) x1 + (2,6) mark_A(x1) = x1 s_A(x1) = ((0,0),(0,1)) x1 + (2,0) a__2nd_A(x1) = ((0,1),(0,1)) x1 + (2,6) cons1_A(x1,x2) = ((1,0),(1,0)) x2 + (3,0) cons_A(x1,x2) = ((1,1),(0,0)) x1 + ((0,0),(1,0)) x2 + (1,0) a__from_A(x1) = ((1,1),(1,1)) x1 + (3,5) precedence: from = a__from > mark = a__2nd = cons > mark# = |2nd| = s > a__from# > cons1 partial status: pi(mark#) = [] pi(|2nd|) = [] pi(from) = [] pi(a__from#) = [] pi(mark) = [1] pi(s) = [] pi(a__2nd) = [] pi(cons1) = [] pi(cons) = [] pi(a__from) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = (2,2) |2nd|_A(x1) = (1,1) from_A(x1) = (4,2) a__from#_A(x1) = (2,2) mark_A(x1) = x1 + (5,4) s_A(x1) = (3,3) a__2nd_A(x1) = (5,4) cons1_A(x1,x2) = (0,3) cons_A(x1,x2) = (0,1) a__from_A(x1) = (4,2) precedence: mark = a__2nd > s = a__from > from > a__from# > cons > mark# = |2nd| > cons1 partial status: pi(mark#) = [] pi(|2nd|) = [] pi(from) = [] pi(a__from#) = [] pi(mark) = [] pi(s) = [] pi(a__2nd) = [] pi(cons1) = [] pi(cons) = [] pi(a__from) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(|2nd|(X)) -> mark#(X) p2: a__from#(X) -> mark#(X) p3: mark#(s(X)) -> mark#(X) and R consists of: r1: a__2nd(cons1(X,cons(Y,Z))) -> mark(Y) r2: a__2nd(cons(X,X1)) -> a__2nd(cons1(mark(X),mark(X1))) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: mark(|2nd|(X)) -> a__2nd(mark(X)) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(cons(X1,X2)) -> cons(mark(X1),X2) r7: mark(s(X)) -> s(mark(X)) r8: mark(cons1(X1,X2)) -> cons1(mark(X1),mark(X2)) r9: a__2nd(X) -> |2nd|(X) r10: a__from(X) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(|2nd|(X)) -> mark#(X) p2: mark#(s(X)) -> mark#(X) and R consists of: r1: a__2nd(cons1(X,cons(Y,Z))) -> mark(Y) r2: a__2nd(cons(X,X1)) -> a__2nd(cons1(mark(X),mark(X1))) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: mark(|2nd|(X)) -> a__2nd(mark(X)) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(cons(X1,X2)) -> cons(mark(X1),X2) r7: mark(s(X)) -> s(mark(X)) r8: mark(cons1(X1,X2)) -> cons1(mark(X1),mark(X2)) r9: a__2nd(X) -> |2nd|(X) r10: a__from(X) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = x1 + (1,2) |2nd|_A(x1) = x1 + (2,1) s_A(x1) = ((1,0),(1,1)) x1 + (2,1) precedence: s > mark# = |2nd| partial status: pi(mark#) = [1] pi(|2nd|) = [1] pi(s) = [1] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = ((1,0),(1,0)) x1 + (0,2) |2nd|_A(x1) = ((1,0),(0,0)) x1 + (1,1) s_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: mark# = |2nd| = s partial status: pi(mark#) = [] pi(|2nd|) = [] pi(s) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.