YES We show the termination of the TRS R: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) a____(X,nil()) -> mark(X) a____(nil(),X) -> mark(X) a__and(tt(),X) -> mark(X) a__isList(V) -> a__isNeList(V) a__isList(nil()) -> tt() a__isList(__(V1,V2)) -> a__and(a__isList(V1),isList(V2)) a__isNeList(V) -> a__isQid(V) a__isNeList(__(V1,V2)) -> a__and(a__isList(V1),isNeList(V2)) a__isNeList(__(V1,V2)) -> a__and(a__isNeList(V1),isList(V2)) a__isNePal(V) -> a__isQid(V) a__isNePal(__(I,__(P,I))) -> a__and(a__isQid(I),isPal(P)) a__isPal(V) -> a__isNePal(V) a__isPal(nil()) -> tt() a__isQid(a()) -> tt() a__isQid(e()) -> tt() a__isQid(i()) -> tt() a__isQid(o()) -> tt() a__isQid(u()) -> tt() mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) mark(and(X1,X2)) -> a__and(mark(X1),X2) mark(isList(X)) -> a__isList(X) mark(isNeList(X)) -> a__isNeList(X) mark(isQid(X)) -> a__isQid(X) mark(isNePal(X)) -> a__isNePal(X) mark(isPal(X)) -> a__isPal(X) mark(nil()) -> nil() mark(tt()) -> tt() mark(a()) -> a() mark(e()) -> e() mark(i()) -> i() mark(o()) -> o() mark(u()) -> u() a____(X1,X2) -> __(X1,X2) a__and(X1,X2) -> and(X1,X2) a__isList(X) -> isList(X) a__isNeList(X) -> isNeList(X) a__isQid(X) -> isQid(X) a__isNePal(X) -> isNePal(X) a__isPal(X) -> isPal(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(__(X,Y),Z) -> mark#(X) p3: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) p4: a____#(__(X,Y),Z) -> mark#(Y) p5: a____#(__(X,Y),Z) -> mark#(Z) p6: a____#(X,nil()) -> mark#(X) p7: a____#(nil(),X) -> mark#(X) p8: a__and#(tt(),X) -> mark#(X) p9: a__isList#(V) -> a__isNeList#(V) p10: a__isList#(__(V1,V2)) -> a__and#(a__isList(V1),isList(V2)) p11: a__isList#(__(V1,V2)) -> a__isList#(V1) p12: a__isNeList#(V) -> a__isQid#(V) p13: a__isNeList#(__(V1,V2)) -> a__and#(a__isList(V1),isNeList(V2)) p14: a__isNeList#(__(V1,V2)) -> a__isList#(V1) p15: a__isNeList#(__(V1,V2)) -> a__and#(a__isNeList(V1),isList(V2)) p16: a__isNeList#(__(V1,V2)) -> a__isNeList#(V1) p17: a__isNePal#(V) -> a__isQid#(V) p18: a__isNePal#(__(I,__(P,I))) -> a__and#(a__isQid(I),isPal(P)) p19: a__isNePal#(__(I,__(P,I))) -> a__isQid#(I) p20: a__isPal#(V) -> a__isNePal#(V) p21: mark#(__(X1,X2)) -> a____#(mark(X1),mark(X2)) p22: mark#(__(X1,X2)) -> mark#(X1) p23: mark#(__(X1,X2)) -> mark#(X2) p24: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p25: mark#(and(X1,X2)) -> mark#(X1) p26: mark#(isList(X)) -> a__isList#(X) p27: mark#(isNeList(X)) -> a__isNeList#(X) p28: mark#(isQid(X)) -> a__isQid#(X) p29: mark#(isNePal(X)) -> a__isNePal#(X) p30: mark#(isPal(X)) -> a__isPal#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__and(tt(),X) -> mark(X) r5: a__isList(V) -> a__isNeList(V) r6: a__isList(nil()) -> tt() r7: a__isList(__(V1,V2)) -> a__and(a__isList(V1),isList(V2)) r8: a__isNeList(V) -> a__isQid(V) r9: a__isNeList(__(V1,V2)) -> a__and(a__isList(V1),isNeList(V2)) r10: a__isNeList(__(V1,V2)) -> a__and(a__isNeList(V1),isList(V2)) r11: a__isNePal(V) -> a__isQid(V) r12: a__isNePal(__(I,__(P,I))) -> a__and(a__isQid(I),isPal(P)) r13: a__isPal(V) -> a__isNePal(V) r14: a__isPal(nil()) -> tt() r15: a__isQid(a()) -> tt() r16: a__isQid(e()) -> tt() r17: a__isQid(i()) -> tt() r18: a__isQid(o()) -> tt() r19: a__isQid(u()) -> tt() r20: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r21: mark(and(X1,X2)) -> a__and(mark(X1),X2) r22: mark(isList(X)) -> a__isList(X) r23: mark(isNeList(X)) -> a__isNeList(X) r24: mark(isQid(X)) -> a__isQid(X) r25: mark(isNePal(X)) -> a__isNePal(X) r26: mark(isPal(X)) -> a__isPal(X) r27: mark(nil()) -> nil() r28: mark(tt()) -> tt() r29: mark(a()) -> a() r30: mark(e()) -> e() r31: mark(i()) -> i() r32: mark(o()) -> o() r33: mark(u()) -> u() r34: a____(X1,X2) -> __(X1,X2) r35: a__and(X1,X2) -> and(X1,X2) r36: a__isList(X) -> isList(X) r37: a__isNeList(X) -> isNeList(X) r38: a__isQid(X) -> isQid(X) r39: a__isNePal(X) -> isNePal(X) r40: a__isPal(X) -> isPal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p13, p14, p15, p16, p18, p20, p21, p22, p23, p24, p25, p26, p27, p29, p30} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(nil(),X) -> mark#(X) p3: mark#(isPal(X)) -> a__isPal#(X) p4: a__isPal#(V) -> a__isNePal#(V) p5: a__isNePal#(__(I,__(P,I))) -> a__and#(a__isQid(I),isPal(P)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(isNePal(X)) -> a__isNePal#(X) p8: mark#(isNeList(X)) -> a__isNeList#(X) p9: a__isNeList#(__(V1,V2)) -> a__isNeList#(V1) p10: a__isNeList#(__(V1,V2)) -> a__and#(a__isNeList(V1),isList(V2)) p11: a__isNeList#(__(V1,V2)) -> a__isList#(V1) p12: a__isList#(__(V1,V2)) -> a__isList#(V1) p13: a__isList#(__(V1,V2)) -> a__and#(a__isList(V1),isList(V2)) p14: a__isList#(V) -> a__isNeList#(V) p15: a__isNeList#(__(V1,V2)) -> a__and#(a__isList(V1),isNeList(V2)) p16: mark#(isList(X)) -> a__isList#(X) p17: mark#(and(X1,X2)) -> mark#(X1) p18: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p19: mark#(__(X1,X2)) -> mark#(X2) p20: mark#(__(X1,X2)) -> mark#(X1) p21: mark#(__(X1,X2)) -> a____#(mark(X1),mark(X2)) p22: a____#(X,nil()) -> mark#(X) p23: a____#(__(X,Y),Z) -> mark#(Z) p24: a____#(__(X,Y),Z) -> mark#(Y) p25: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) p26: a____#(__(X,Y),Z) -> mark#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__and(tt(),X) -> mark(X) r5: a__isList(V) -> a__isNeList(V) r6: a__isList(nil()) -> tt() r7: a__isList(__(V1,V2)) -> a__and(a__isList(V1),isList(V2)) r8: a__isNeList(V) -> a__isQid(V) r9: a__isNeList(__(V1,V2)) -> a__and(a__isList(V1),isNeList(V2)) r10: a__isNeList(__(V1,V2)) -> a__and(a__isNeList(V1),isList(V2)) r11: a__isNePal(V) -> a__isQid(V) r12: a__isNePal(__(I,__(P,I))) -> a__and(a__isQid(I),isPal(P)) r13: a__isPal(V) -> a__isNePal(V) r14: a__isPal(nil()) -> tt() r15: a__isQid(a()) -> tt() r16: a__isQid(e()) -> tt() r17: a__isQid(i()) -> tt() r18: a__isQid(o()) -> tt() r19: a__isQid(u()) -> tt() r20: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r21: mark(and(X1,X2)) -> a__and(mark(X1),X2) r22: mark(isList(X)) -> a__isList(X) r23: mark(isNeList(X)) -> a__isNeList(X) r24: mark(isQid(X)) -> a__isQid(X) r25: mark(isNePal(X)) -> a__isNePal(X) r26: mark(isPal(X)) -> a__isPal(X) r27: mark(nil()) -> nil() r28: mark(tt()) -> tt() r29: mark(a()) -> a() r30: mark(e()) -> e() r31: mark(i()) -> i() r32: mark(o()) -> o() r33: mark(u()) -> u() r34: a____(X1,X2) -> __(X1,X2) r35: a__and(X1,X2) -> and(X1,X2) r36: a__isList(X) -> isList(X) r37: a__isNeList(X) -> isNeList(X) r38: a__isQid(X) -> isQid(X) r39: a__isNePal(X) -> isNePal(X) r40: a__isPal(X) -> isPal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a____#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (0,21) ___A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (20,5) mark_A(x1) = ((1,0),(1,1)) x1 + (0,6) a_____A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (20,6) nil_A() = (8,0) mark#_A(x1) = ((1,0),(1,0)) x1 + (8,0) isPal_A(x1) = x1 + (25,0) a__isPal#_A(x1) = x1 + (3,2) a__isNePal#_A(x1) = ((1,0),(1,0)) x1 + (2,1) a__and#_A(x1,x2) = x2 + (16,5) a__isQid_A(x1) = ((1,0),(0,0)) x1 + (0,10) tt_A() = (7,9) isNePal_A(x1) = x1 + (2,0) isNeList_A(x1) = ((1,0),(1,1)) x1 + (4,15) a__isNeList#_A(x1) = ((1,0),(0,0)) x1 + (3,14) a__isNeList_A(x1) = ((1,0),(1,1)) x1 + (4,16) isList_A(x1) = x1 + (6,5) a__isList#_A(x1) = x1 + (7,15) a__isList_A(x1) = ((1,0),(1,1)) x1 + (6,17) and_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (9,1) a__and_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (9,2) a__isNePal_A(x1) = x1 + (2,8) a__isPal_A(x1) = x1 + (25,9) a_A() = (8,0) e_A() = (8,10) i_A() = (8,0) o_A() = (8,0) u_A() = (8,0) isQid_A(x1) = ((1,0),(0,0)) x1 + (0,5) precedence: a__isNePal# > a__isPal# > a____# = mark# = a__and# > mark = nil = a__isList = e = o = u > isNeList = a__isNeList > a__isPal > a____ = isPal > __ = a__isQid = tt = a__and = a__isNePal > isList = a > a__isNeList# > a__isList# > isNePal = and = isQid > i partial status: pi(a____#) = [] pi(__) = [] pi(mark) = [1] pi(a____) = [] pi(nil) = [] pi(mark#) = [] pi(isPal) = [1] pi(a__isPal#) = [] pi(a__isNePal#) = [] pi(a__and#) = [2] pi(a__isQid) = [] pi(tt) = [] pi(isNePal) = [] pi(isNeList) = [] pi(a__isNeList#) = [] pi(a__isNeList) = [1] pi(isList) = [1] pi(a__isList#) = [1] pi(a__isList) = [1] pi(and) = [] pi(a__and) = [] pi(a__isNePal) = [1] pi(a__isPal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(isQid) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a____#_A(x1,x2) = (0,0) ___A(x1,x2) = (5,3) mark_A(x1) = ((1,0),(1,1)) x1 + (6,7) a_____A(x1,x2) = (12,1) nil_A() = (2,2) mark#_A(x1) = (0,0) isPal_A(x1) = (0,0) a__isPal#_A(x1) = (2,2) a__isNePal#_A(x1) = (1,1) a__and#_A(x1,x2) = (0,0) a__isQid_A(x1) = (0,2) tt_A() = (0,1) isNePal_A(x1) = (0,0) isNeList_A(x1) = (0,0) a__isNeList#_A(x1) = (2,0) a__isNeList_A(x1) = ((0,0),(1,0)) x1 isList_A(x1) = ((0,0),(1,0)) x1 a__isList#_A(x1) = (1,0) a__isList_A(x1) = ((0,0),(1,0)) x1 and_A(x1,x2) = (0,1) a__and_A(x1,x2) = (0,4) a__isNePal_A(x1) = (0,5) a__isPal_A(x1) = (0,6) a_A() = (1,2) e_A() = (1,2) i_A() = (0,2) o_A() = (1,0) u_A() = (1,2) isQid_A(x1) = (0,1) precedence: u > isQid > o > and > e > i > mark = a____ > a__isList = a__isPal > a__isNePal > a__isQid > a > __ = isNeList = a__isNeList = a__isList# > a__and > isPal > tt > a__isPal# = isNePal > nil > a____# = mark# = a__isNePal# = a__and# = a__isNeList# = isList partial status: pi(a____#) = [] pi(__) = [] pi(mark) = [] pi(a____) = [] pi(nil) = [] pi(mark#) = [] pi(isPal) = [] pi(a__isPal#) = [] pi(a__isNePal#) = [] pi(a__and#) = [] pi(a__isQid) = [] pi(tt) = [] pi(isNePal) = [] pi(isNeList) = [] pi(a__isNeList#) = [] pi(a__isNeList) = [] pi(isList) = [] pi(a__isList#) = [] pi(a__isList) = [] pi(and) = [] pi(a__and) = [] pi(a__isNePal) = [] pi(a__isPal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(isQid) = [] The next rules are strictly ordered: p3, p4, p5, p7, p8, p9, p11, p12, p13, p14, p15, p16, p25 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(nil(),X) -> mark#(X) p3: a__and#(tt(),X) -> mark#(X) p4: a__isNeList#(__(V1,V2)) -> a__and#(a__isNeList(V1),isList(V2)) p5: mark#(and(X1,X2)) -> mark#(X1) p6: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p7: mark#(__(X1,X2)) -> mark#(X2) p8: mark#(__(X1,X2)) -> mark#(X1) p9: mark#(__(X1,X2)) -> a____#(mark(X1),mark(X2)) p10: a____#(X,nil()) -> mark#(X) p11: a____#(__(X,Y),Z) -> mark#(Z) p12: a____#(__(X,Y),Z) -> mark#(Y) p13: a____#(__(X,Y),Z) -> mark#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__and(tt(),X) -> mark(X) r5: a__isList(V) -> a__isNeList(V) r6: a__isList(nil()) -> tt() r7: a__isList(__(V1,V2)) -> a__and(a__isList(V1),isList(V2)) r8: a__isNeList(V) -> a__isQid(V) r9: a__isNeList(__(V1,V2)) -> a__and(a__isList(V1),isNeList(V2)) r10: a__isNeList(__(V1,V2)) -> a__and(a__isNeList(V1),isList(V2)) r11: a__isNePal(V) -> a__isQid(V) r12: a__isNePal(__(I,__(P,I))) -> a__and(a__isQid(I),isPal(P)) r13: a__isPal(V) -> a__isNePal(V) r14: a__isPal(nil()) -> tt() r15: a__isQid(a()) -> tt() r16: a__isQid(e()) -> tt() r17: a__isQid(i()) -> tt() r18: a__isQid(o()) -> tt() r19: a__isQid(u()) -> tt() r20: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r21: mark(and(X1,X2)) -> a__and(mark(X1),X2) r22: mark(isList(X)) -> a__isList(X) r23: mark(isNeList(X)) -> a__isNeList(X) r24: mark(isQid(X)) -> a__isQid(X) r25: mark(isNePal(X)) -> a__isNePal(X) r26: mark(isPal(X)) -> a__isPal(X) r27: mark(nil()) -> nil() r28: mark(tt()) -> tt() r29: mark(a()) -> a() r30: mark(e()) -> e() r31: mark(i()) -> i() r32: mark(o()) -> o() r33: mark(u()) -> u() r34: a____(X1,X2) -> __(X1,X2) r35: a__and(X1,X2) -> and(X1,X2) r36: a__isList(X) -> isList(X) r37: a__isNeList(X) -> isNeList(X) r38: a__isQid(X) -> isQid(X) r39: a__isNePal(X) -> isNePal(X) r40: a__isPal(X) -> isPal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p5, p6, p7, p8, p9, p10, p11, p12, p13} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(__(X,Y),Z) -> mark#(X) p3: mark#(__(X1,X2)) -> a____#(mark(X1),mark(X2)) p4: a____#(__(X,Y),Z) -> mark#(Y) p5: mark#(__(X1,X2)) -> mark#(X1) p6: mark#(__(X1,X2)) -> mark#(X2) p7: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p8: a__and#(tt(),X) -> mark#(X) p9: mark#(and(X1,X2)) -> mark#(X1) p10: a____#(__(X,Y),Z) -> mark#(Z) p11: a____#(X,nil()) -> mark#(X) p12: a____#(nil(),X) -> mark#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__and(tt(),X) -> mark(X) r5: a__isList(V) -> a__isNeList(V) r6: a__isList(nil()) -> tt() r7: a__isList(__(V1,V2)) -> a__and(a__isList(V1),isList(V2)) r8: a__isNeList(V) -> a__isQid(V) r9: a__isNeList(__(V1,V2)) -> a__and(a__isList(V1),isNeList(V2)) r10: a__isNeList(__(V1,V2)) -> a__and(a__isNeList(V1),isList(V2)) r11: a__isNePal(V) -> a__isQid(V) r12: a__isNePal(__(I,__(P,I))) -> a__and(a__isQid(I),isPal(P)) r13: a__isPal(V) -> a__isNePal(V) r14: a__isPal(nil()) -> tt() r15: a__isQid(a()) -> tt() r16: a__isQid(e()) -> tt() r17: a__isQid(i()) -> tt() r18: a__isQid(o()) -> tt() r19: a__isQid(u()) -> tt() r20: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r21: mark(and(X1,X2)) -> a__and(mark(X1),X2) r22: mark(isList(X)) -> a__isList(X) r23: mark(isNeList(X)) -> a__isNeList(X) r24: mark(isQid(X)) -> a__isQid(X) r25: mark(isNePal(X)) -> a__isNePal(X) r26: mark(isPal(X)) -> a__isPal(X) r27: mark(nil()) -> nil() r28: mark(tt()) -> tt() r29: mark(a()) -> a() r30: mark(e()) -> e() r31: mark(i()) -> i() r32: mark(o()) -> o() r33: mark(u()) -> u() r34: a____(X1,X2) -> __(X1,X2) r35: a__and(X1,X2) -> and(X1,X2) r36: a__isList(X) -> isList(X) r37: a__isNeList(X) -> isNeList(X) r38: a__isQid(X) -> isQid(X) r39: a__isNePal(X) -> isNePal(X) r40: a__isPal(X) -> isPal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a____#_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(0,0)) x2 + (15,39) ___A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(0,0)) x2 + (14,47) mark_A(x1) = ((1,0),(1,1)) x1 + (0,41) a_____A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(0,0)) x2 + (14,60) mark#_A(x1) = ((1,0),(1,1)) x1 + (2,19) and_A(x1,x2) = x1 + x2 + (3,19) a__and#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,1)) x2 + (0,41) tt_A() = (2,21) nil_A() = (0,42) a__and_A(x1,x2) = x1 + x2 + (3,21) a__isList_A(x1) = ((1,0),(1,1)) x1 + (5,24) a__isNeList_A(x1) = ((1,0),(1,1)) x1 + (4,23) isList_A(x1) = x1 + (5,1) a__isQid_A(x1) = (3,22) isNeList_A(x1) = ((1,0),(1,1)) x1 + (4,0) a__isNePal_A(x1) = ((1,0),(0,0)) x1 + (4,45) isPal_A(x1) = ((1,0),(0,0)) x1 + (23,1) a__isPal_A(x1) = ((1,0),(0,0)) x1 + (23,46) a_A() = (3,22) e_A() = (3,22) i_A() = (3,22) o_A() = (0,22) u_A() = (3,22) isQid_A(x1) = (3,0) isNePal_A(x1) = ((1,0),(0,0)) x1 + (4,1) precedence: a__isPal > a__isNePal > mark = a____ = a__and > nil > a__isList > a__isNeList > a__isQid > tt > and > u > a____# = isNeList = o > isNePal > mark# = a__and# > __ = isPal > isQid > a = e = i > isList partial status: pi(a____#) = [1] pi(__) = [1] pi(mark) = [] pi(a____) = [1] pi(mark#) = [1] pi(and) = [1, 2] pi(a__and#) = [2] pi(tt) = [] pi(nil) = [] pi(a__and) = [1] pi(a__isList) = [1] pi(a__isNeList) = [1] pi(isList) = [] pi(a__isQid) = [] pi(isNeList) = [] pi(a__isNePal) = [] pi(isPal) = [] pi(a__isPal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(isQid) = [] pi(isNePal) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a____#_A(x1,x2) = ((1,0),(1,0)) x1 + (2,1) ___A(x1,x2) = ((0,0),(1,0)) x1 + (4,13) mark_A(x1) = (11,19) a_____A(x1,x2) = (5,12) mark#_A(x1) = x1 + (8,5) and_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (2,0) a__and#_A(x1,x2) = x2 + (9,6) tt_A() = (2,20) nil_A() = (5,0) a__and_A(x1,x2) = ((1,0),(1,1)) x1 + (5,6) a__isList_A(x1) = ((1,0),(1,1)) x1 + (11,19) a__isNeList_A(x1) = ((1,0),(1,1)) x1 + (11,19) isList_A(x1) = (0,12) a__isQid_A(x1) = (3,5) isNeList_A(x1) = (1,1) a__isNePal_A(x1) = (9,15) isPal_A(x1) = (0,0) a__isPal_A(x1) = (10,16) a_A() = (1,0) e_A() = (1,0) i_A() = (3,21) o_A() = (1,0) u_A() = (1,0) isQid_A(x1) = (0,0) isNePal_A(x1) = (9,1) precedence: o > e > i = u > isNePal > tt > nil = a__isPal > isQid > a > a__isList = a__isNeList = isList = a__isQid > mark > a____ > a____# = __ = mark# = and = a__and > isNeList > a__and# > isPal > a__isNePal partial status: pi(a____#) = [] pi(__) = [] pi(mark) = [] pi(a____) = [] pi(mark#) = [1] pi(and) = [] pi(a__and#) = [2] pi(tt) = [] pi(nil) = [] pi(a__and) = [1] pi(a__isList) = [] pi(a__isNeList) = [] pi(isList) = [] pi(a__isQid) = [] pi(isNeList) = [] pi(a__isNePal) = [] pi(isPal) = [] pi(a__isPal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(isQid) = [] pi(isNePal) = [] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p8, p9, p10, p11, p12 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__and(tt(),X) -> mark(X) r5: a__isList(V) -> a__isNeList(V) r6: a__isList(nil()) -> tt() r7: a__isList(__(V1,V2)) -> a__and(a__isList(V1),isList(V2)) r8: a__isNeList(V) -> a__isQid(V) r9: a__isNeList(__(V1,V2)) -> a__and(a__isList(V1),isNeList(V2)) r10: a__isNeList(__(V1,V2)) -> a__and(a__isNeList(V1),isList(V2)) r11: a__isNePal(V) -> a__isQid(V) r12: a__isNePal(__(I,__(P,I))) -> a__and(a__isQid(I),isPal(P)) r13: a__isPal(V) -> a__isNePal(V) r14: a__isPal(nil()) -> tt() r15: a__isQid(a()) -> tt() r16: a__isQid(e()) -> tt() r17: a__isQid(i()) -> tt() r18: a__isQid(o()) -> tt() r19: a__isQid(u()) -> tt() r20: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r21: mark(and(X1,X2)) -> a__and(mark(X1),X2) r22: mark(isList(X)) -> a__isList(X) r23: mark(isNeList(X)) -> a__isNeList(X) r24: mark(isQid(X)) -> a__isQid(X) r25: mark(isNePal(X)) -> a__isNePal(X) r26: mark(isPal(X)) -> a__isPal(X) r27: mark(nil()) -> nil() r28: mark(tt()) -> tt() r29: mark(a()) -> a() r30: mark(e()) -> e() r31: mark(i()) -> i() r32: mark(o()) -> o() r33: mark(u()) -> u() r34: a____(X1,X2) -> __(X1,X2) r35: a__and(X1,X2) -> and(X1,X2) r36: a__isList(X) -> isList(X) r37: a__isNeList(X) -> isNeList(X) r38: a__isQid(X) -> isQid(X) r39: a__isNePal(X) -> isNePal(X) r40: a__isPal(X) -> isPal(X) The estimated dependency graph contains the following SCCs: (no SCCs)