YES We show the termination of the TRS R: U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2)) U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2)) U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2)) U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2)) U15(tt(),V2) -> U16(isNat(activate(V2))) U16(tt()) -> tt() U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1)) U22(tt(),V1) -> U23(isNat(activate(V1))) U23(tt()) -> tt() U31(tt(),V2) -> U32(isNatKind(activate(V2))) U32(tt()) -> tt() U41(tt()) -> tt() U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N)) U52(tt(),N) -> activate(N) U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N)) U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N)) U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N)) U64(tt(),M,N) -> s(plus(activate(N),activate(M))) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2)) isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1)) isNatKind(n__0()) -> tt() isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2)) isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1))) plus(N,|0|()) -> U51(isNat(N),N) plus(N,s(M)) -> U61(isNat(M),M,N) |0|() -> n__0() plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) activate(n__0()) -> |0|() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2)) p2: U11#(tt(),V1,V2) -> isNatKind#(activate(V1)) p3: U11#(tt(),V1,V2) -> activate#(V1) p4: U11#(tt(),V1,V2) -> activate#(V2) p5: U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2)) p6: U12#(tt(),V1,V2) -> isNatKind#(activate(V2)) p7: U12#(tt(),V1,V2) -> activate#(V2) p8: U12#(tt(),V1,V2) -> activate#(V1) p9: U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2)) p10: U13#(tt(),V1,V2) -> isNatKind#(activate(V2)) p11: U13#(tt(),V1,V2) -> activate#(V2) p12: U13#(tt(),V1,V2) -> activate#(V1) p13: U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2)) p14: U14#(tt(),V1,V2) -> isNat#(activate(V1)) p15: U14#(tt(),V1,V2) -> activate#(V1) p16: U14#(tt(),V1,V2) -> activate#(V2) p17: U15#(tt(),V2) -> U16#(isNat(activate(V2))) p18: U15#(tt(),V2) -> isNat#(activate(V2)) p19: U15#(tt(),V2) -> activate#(V2) p20: U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1)) p21: U21#(tt(),V1) -> isNatKind#(activate(V1)) p22: U21#(tt(),V1) -> activate#(V1) p23: U22#(tt(),V1) -> U23#(isNat(activate(V1))) p24: U22#(tt(),V1) -> isNat#(activate(V1)) p25: U22#(tt(),V1) -> activate#(V1) p26: U31#(tt(),V2) -> U32#(isNatKind(activate(V2))) p27: U31#(tt(),V2) -> isNatKind#(activate(V2)) p28: U31#(tt(),V2) -> activate#(V2) p29: U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N)) p30: U51#(tt(),N) -> isNatKind#(activate(N)) p31: U51#(tt(),N) -> activate#(N) p32: U52#(tt(),N) -> activate#(N) p33: U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N)) p34: U61#(tt(),M,N) -> isNatKind#(activate(M)) p35: U61#(tt(),M,N) -> activate#(M) p36: U61#(tt(),M,N) -> activate#(N) p37: U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N)) p38: U62#(tt(),M,N) -> isNat#(activate(N)) p39: U62#(tt(),M,N) -> activate#(N) p40: U62#(tt(),M,N) -> activate#(M) p41: U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N)) p42: U63#(tt(),M,N) -> isNatKind#(activate(N)) p43: U63#(tt(),M,N) -> activate#(N) p44: U63#(tt(),M,N) -> activate#(M) p45: U64#(tt(),M,N) -> s#(plus(activate(N),activate(M))) p46: U64#(tt(),M,N) -> plus#(activate(N),activate(M)) p47: U64#(tt(),M,N) -> activate#(N) p48: U64#(tt(),M,N) -> activate#(M) p49: isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2)) p50: isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1)) p51: isNat#(n__plus(V1,V2)) -> activate#(V1) p52: isNat#(n__plus(V1,V2)) -> activate#(V2) p53: isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1)) p54: isNat#(n__s(V1)) -> isNatKind#(activate(V1)) p55: isNat#(n__s(V1)) -> activate#(V1) p56: isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2)) p57: isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1)) p58: isNatKind#(n__plus(V1,V2)) -> activate#(V1) p59: isNatKind#(n__plus(V1,V2)) -> activate#(V2) p60: isNatKind#(n__s(V1)) -> U41#(isNatKind(activate(V1))) p61: isNatKind#(n__s(V1)) -> isNatKind#(activate(V1)) p62: isNatKind#(n__s(V1)) -> activate#(V1) p63: plus#(N,|0|()) -> U51#(isNat(N),N) p64: plus#(N,|0|()) -> isNat#(N) p65: plus#(N,s(M)) -> U61#(isNat(M),M,N) p66: plus#(N,s(M)) -> isNat#(M) p67: activate#(n__0()) -> |0|#() p68: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p69: activate#(n__plus(X1,X2)) -> activate#(X1) p70: activate#(n__plus(X1,X2)) -> activate#(X2) p71: activate#(n__s(X)) -> s#(activate(X)) p72: activate#(n__s(X)) -> activate#(X) and R consists of: r1: U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2)) r2: U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2)) r3: U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2)) r4: U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2)) r5: U15(tt(),V2) -> U16(isNat(activate(V2))) r6: U16(tt()) -> tt() r7: U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1)) r8: U22(tt(),V1) -> U23(isNat(activate(V1))) r9: U23(tt()) -> tt() r10: U31(tt(),V2) -> U32(isNatKind(activate(V2))) r11: U32(tt()) -> tt() r12: U41(tt()) -> tt() r13: U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N)) r14: U52(tt(),N) -> activate(N) r15: U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N)) r16: U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N)) r17: U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N)) r18: U64(tt(),M,N) -> s(plus(activate(N),activate(M))) r19: isNat(n__0()) -> tt() r20: isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2)) r21: isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1)) r22: isNatKind(n__0()) -> tt() r23: isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2)) r24: isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1))) r25: plus(N,|0|()) -> U51(isNat(N),N) r26: plus(N,s(M)) -> U61(isNat(M),M,N) r27: |0|() -> n__0() r28: plus(X1,X2) -> n__plus(X1,X2) r29: s(X) -> n__s(X) r30: activate(n__0()) -> |0|() r31: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r32: activate(n__s(X)) -> s(activate(X)) r33: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p18, p19, p20, p21, p22, p24, p25, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36, p37, p38, p39, p40, p41, p42, p43, p44, p46, p47, p48, p49, p50, p51, p52, p53, p54, p55, p56, p57, p58, p59, p61, p62, p63, p64, p65, p66, p68, p69, p70, p72} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2)) p2: U12#(tt(),V1,V2) -> activate#(V1) p3: activate#(n__s(X)) -> activate#(X) p4: activate#(n__plus(X1,X2)) -> activate#(X2) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p7: plus#(N,s(M)) -> isNat#(M) p8: isNat#(n__s(V1)) -> activate#(V1) p9: isNat#(n__s(V1)) -> isNatKind#(activate(V1)) p10: isNatKind#(n__s(V1)) -> activate#(V1) p11: isNatKind#(n__s(V1)) -> isNatKind#(activate(V1)) p12: isNatKind#(n__plus(V1,V2)) -> activate#(V2) p13: isNatKind#(n__plus(V1,V2)) -> activate#(V1) p14: isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1)) p15: isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2)) p16: U31#(tt(),V2) -> activate#(V2) p17: U31#(tt(),V2) -> isNatKind#(activate(V2)) p18: isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1)) p19: U21#(tt(),V1) -> activate#(V1) p20: U21#(tt(),V1) -> isNatKind#(activate(V1)) p21: U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1)) p22: U22#(tt(),V1) -> activate#(V1) p23: U22#(tt(),V1) -> isNat#(activate(V1)) p24: isNat#(n__plus(V1,V2)) -> activate#(V2) p25: isNat#(n__plus(V1,V2)) -> activate#(V1) p26: isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1)) p27: isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2)) p28: U11#(tt(),V1,V2) -> activate#(V2) p29: U11#(tt(),V1,V2) -> activate#(V1) p30: U11#(tt(),V1,V2) -> isNatKind#(activate(V1)) p31: plus#(N,s(M)) -> U61#(isNat(M),M,N) p32: U61#(tt(),M,N) -> activate#(N) p33: U61#(tt(),M,N) -> activate#(M) p34: U61#(tt(),M,N) -> isNatKind#(activate(M)) p35: U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N)) p36: U62#(tt(),M,N) -> activate#(M) p37: U62#(tt(),M,N) -> activate#(N) p38: U62#(tt(),M,N) -> isNat#(activate(N)) p39: U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N)) p40: U63#(tt(),M,N) -> activate#(M) p41: U63#(tt(),M,N) -> activate#(N) p42: U63#(tt(),M,N) -> isNatKind#(activate(N)) p43: U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N)) p44: U64#(tt(),M,N) -> activate#(M) p45: U64#(tt(),M,N) -> activate#(N) p46: U64#(tt(),M,N) -> plus#(activate(N),activate(M)) p47: plus#(N,|0|()) -> isNat#(N) p48: plus#(N,|0|()) -> U51#(isNat(N),N) p49: U51#(tt(),N) -> activate#(N) p50: U51#(tt(),N) -> isNatKind#(activate(N)) p51: U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N)) p52: U52#(tt(),N) -> activate#(N) p53: U12#(tt(),V1,V2) -> activate#(V2) p54: U12#(tt(),V1,V2) -> isNatKind#(activate(V2)) p55: U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2)) p56: U13#(tt(),V1,V2) -> activate#(V1) p57: U13#(tt(),V1,V2) -> activate#(V2) p58: U13#(tt(),V1,V2) -> isNatKind#(activate(V2)) p59: U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2)) p60: U14#(tt(),V1,V2) -> activate#(V2) p61: U14#(tt(),V1,V2) -> activate#(V1) p62: U14#(tt(),V1,V2) -> isNat#(activate(V1)) p63: U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2)) p64: U15#(tt(),V2) -> activate#(V2) p65: U15#(tt(),V2) -> isNat#(activate(V2)) and R consists of: r1: U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2)) r2: U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2)) r3: U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2)) r4: U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2)) r5: U15(tt(),V2) -> U16(isNat(activate(V2))) r6: U16(tt()) -> tt() r7: U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1)) r8: U22(tt(),V1) -> U23(isNat(activate(V1))) r9: U23(tt()) -> tt() r10: U31(tt(),V2) -> U32(isNatKind(activate(V2))) r11: U32(tt()) -> tt() r12: U41(tt()) -> tt() r13: U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N)) r14: U52(tt(),N) -> activate(N) r15: U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N)) r16: U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N)) r17: U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N)) r18: U64(tt(),M,N) -> s(plus(activate(N),activate(M))) r19: isNat(n__0()) -> tt() r20: isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2)) r21: isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1)) r22: isNatKind(n__0()) -> tt() r23: isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2)) r24: isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1))) r25: plus(N,|0|()) -> U51(isNat(N),N) r26: plus(N,s(M)) -> U61(isNat(M),M,N) r27: |0|() -> n__0() r28: plus(X1,X2) -> n__plus(X1,X2) r29: s(X) -> n__s(X) r30: activate(n__0()) -> |0|() r31: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r32: activate(n__s(X)) -> s(activate(X)) r33: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: U11#_A(x1,x2,x3) = ((1,0),(1,1)) x2 + ((1,0),(1,1)) x3 + (12,61) tt_A() = (7,58) U12#_A(x1,x2,x3) = ((1,0),(1,1)) x2 + x3 + (11,140) isNatKind_A(x1) = x1 + (2,31) activate_A(x1) = ((1,0),(1,1)) x1 + (0,76) activate#_A(x1) = ((1,0),(1,0)) x1 + (8,62) n__s_A(x1) = ((1,0),(1,0)) x1 + (76,1) n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,0)) x2 + (13,46) plus#_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (0,57) s_A(x1) = ((1,0),(1,0)) x1 + (76,2) isNat#_A(x1) = x1 + (9,60) isNatKind#_A(x1) = ((1,0),(1,1)) x1 + (8,29) U31#_A(x1,x2) = ((1,0),(1,1)) x2 + (9,12) U21#_A(x1,x2) = ((1,0),(1,0)) x2 + (11,214) U22#_A(x1,x2) = ((1,0),(1,1)) x2 + (10,137) U61#_A(x1,x2,x3) = ((0,0),(1,0)) x1 + x2 + ((1,0),(1,0)) x3 + (75,56) isNat_A(x1) = ((1,0),(0,0)) x1 + (2,58) U62#_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (74,288) U63#_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,1)) x3 + (10,211) U64#_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (9,210) |0|_A() = (10,3) U51#_A(x1,x2) = ((0,0),(1,0)) x1 + x2 + (10,56) U52#_A(x1,x2) = ((1,0),(1,1)) x2 + (8,63) U13#_A(x1,x2,x3) = ((1,0),(0,0)) x2 + x3 + (10,63) U14#_A(x1,x2,x3) = ((1,0),(1,1)) x2 + ((1,0),(0,0)) x3 + (9,214) U15#_A(x1,x2) = x1 + x2 + (6,79) U16_A(x1) = (8,59) U15_A(x1,x2) = (9,60) U64_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (89,16) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,0)) x2 + (13,47) U14_A(x1,x2,x3) = (10,61) U63_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (89,56) U13_A(x1,x2,x3) = (11,75) U23_A(x1) = (8,55) U52_A(x1,x2) = ((1,0),(0,0)) x2 + (8,1) U62_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (89,57) U12_A(x1,x2,x3) = (12,108) U22_A(x1,x2) = (9,56) U32_A(x1) = (7,59) U51_A(x1,x2) = ((1,0),(0,0)) x2 + (9,108) U61_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (89,57) U11_A(x1,x2,x3) = ((0,0),(1,0)) x2 + (14,109) U21_A(x1,x2) = ((0,0),(1,0)) x2 + (10,57) U31_A(x1,x2) = ((1,0),(1,0)) x1 + (12,70) U41_A(x1) = x1 + (75,1) n__0_A() = (10,3) precedence: U11# = tt = U12# = isNatKind = activate = activate# = n__s = n__plus = plus# = s = isNat# = isNatKind# = U31# = U21# = U22# = U61# = isNat = U62# = U63# = U64# = |0| = U51# = U52# = U13# = U14# = U15# = U16 = U15 = U64 = plus = U14 = U63 = U13 = U23 = U52 = U62 = U12 = U22 = U32 = U51 = U61 = U11 = U21 = U31 = U41 = n__0 partial status: pi(U11#) = [] pi(tt) = [] pi(U12#) = [] pi(isNatKind) = [] pi(activate) = [] pi(activate#) = [] pi(n__s) = [] pi(n__plus) = [] pi(plus#) = [] pi(s) = [] pi(isNat#) = [] pi(isNatKind#) = [] pi(U31#) = [] pi(U21#) = [] pi(U22#) = [] pi(U61#) = [] pi(isNat) = [] pi(U62#) = [] pi(U63#) = [] pi(U64#) = [] pi(|0|) = [] pi(U51#) = [] pi(U52#) = [] pi(U13#) = [] pi(U14#) = [] pi(U15#) = [] pi(U16) = [] pi(U15) = [] pi(U64) = [] pi(plus) = [] pi(U14) = [] pi(U63) = [] pi(U13) = [] pi(U23) = [] pi(U52) = [] pi(U62) = [] pi(U12) = [] pi(U22) = [] pi(U32) = [] pi(U51) = [] pi(U61) = [] pi(U11) = [] pi(U21) = [] pi(U31) = [] pi(U41) = [] pi(n__0) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: U11#_A(x1,x2,x3) = ((0,0),(1,0)) x3 + (12,24) tt_A() = (5,0) U12#_A(x1,x2,x3) = ((0,0),(1,0)) x3 + (11,3) isNatKind_A(x1) = (10,0) activate_A(x1) = (2,4) activate#_A(x1) = (2,23) n__s_A(x1) = (4,24) n__plus_A(x1,x2) = ((1,0),(0,0)) x1 + (2,6) plus#_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,0),(1,0)) x2 + (0,1) s_A(x1) = (14,3) isNat#_A(x1) = ((1,0),(1,1)) x1 + (0,15) isNatKind#_A(x1) = (4,23) U31#_A(x1,x2) = (4,23) U21#_A(x1,x2) = (11,25) U22#_A(x1,x2) = (6,20) U61#_A(x1,x2,x3) = (0,11) isNat_A(x1) = (13,10) U62#_A(x1,x2,x3) = (0,10) U63#_A(x1,x2,x3) = (7,24) U64#_A(x1,x2,x3) = (6,3) |0|_A() = (14,25) U51#_A(x1,x2) = ((1,0),(0,0)) x2 + (2,24) U52#_A(x1,x2) = (6,25) U13#_A(x1,x2,x3) = (4,24) U14#_A(x1,x2,x3) = (3,22) U15#_A(x1,x2) = ((0,0),(1,0)) x1 + (6,19) U16_A(x1) = (6,2) U15_A(x1,x2) = (7,1) U64_A(x1,x2,x3) = (1,5) plus_A(x1,x2) = x1 + (16,9) U14_A(x1,x2,x3) = (8,2) U63_A(x1,x2,x3) = (6,6) U13_A(x1,x2,x3) = (9,3) U23_A(x1) = (6,4) U52_A(x1,x2) = (15,2) U62_A(x1,x2,x3) = (14,7) U12_A(x1,x2,x3) = (11,4) U22_A(x1,x2) = (7,3) U32_A(x1) = (6,1) U51_A(x1,x2) = (15,3) U61_A(x1,x2,x3) = (15,8) U11_A(x1,x2,x3) = (12,9) U21_A(x1,x2) = (9,25) U31_A(x1,x2) = (7,7) U41_A(x1) = (11,25) n__0_A() = (0,1) precedence: n__0 > plus > U12 > U61 > n__plus > U64# > U12# > s > n__s > U21# > U14# > activate > U62 > U63 > isNatKind = U64 = U31 = U41 > U21 > isNat > U14 > U13 > U11 > U15# > U15 > U13# > U52# > plus# = U51# > isNat# = isNatKind# = U31# > U32 > U22 > U51 > U52 > activate# = U22# > U61# > U16 > U62# > |0| > U63# > U11# > U23 > tt partial status: pi(U11#) = [] pi(tt) = [] pi(U12#) = [] pi(isNatKind) = [] pi(activate) = [] pi(activate#) = [] pi(n__s) = [] pi(n__plus) = [] pi(plus#) = [1] pi(s) = [] pi(isNat#) = [1] pi(isNatKind#) = [] pi(U31#) = [] pi(U21#) = [] pi(U22#) = [] pi(U61#) = [] pi(isNat) = [] pi(U62#) = [] pi(U63#) = [] pi(U64#) = [] pi(|0|) = [] pi(U51#) = [] pi(U52#) = [] pi(U13#) = [] pi(U14#) = [] pi(U15#) = [] pi(U16) = [] pi(U15) = [] pi(U64) = [] pi(plus) = [] pi(U14) = [] pi(U63) = [] pi(U13) = [] pi(U23) = [] pi(U52) = [] pi(U62) = [] pi(U12) = [] pi(U22) = [] pi(U32) = [] pi(U51) = [] pi(U61) = [] pi(U11) = [] pi(U21) = [] pi(U31) = [] pi(U41) = [] pi(n__0) = [] The next rules are strictly ordered: p1, p2, p7, p8, p9, p10, p12, p13, p16, p18, p20, p21, p22, p23, p24, p26, p27, p28, p30, p31, p32, p33, p34, p35, p36, p37, p38, p39, p40, p42, p43, p48, p49, p50, p51, p52, p53, p54, p55, p56, p57, p58, p59, p61, p62, p63, p65 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> activate#(X2) p3: activate#(n__plus(X1,X2)) -> activate#(X1) p4: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p5: isNatKind#(n__s(V1)) -> isNatKind#(activate(V1)) p6: isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1)) p7: isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2)) p8: U31#(tt(),V2) -> isNatKind#(activate(V2)) p9: U21#(tt(),V1) -> activate#(V1) p10: isNat#(n__plus(V1,V2)) -> activate#(V1) p11: U11#(tt(),V1,V2) -> activate#(V1) p12: U63#(tt(),M,N) -> activate#(N) p13: U64#(tt(),M,N) -> activate#(M) p14: U64#(tt(),M,N) -> activate#(N) p15: U64#(tt(),M,N) -> plus#(activate(N),activate(M)) p16: plus#(N,|0|()) -> isNat#(N) p17: U14#(tt(),V1,V2) -> activate#(V2) p18: U15#(tt(),V2) -> activate#(V2) and R consists of: r1: U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2)) r2: U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2)) r3: U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2)) r4: U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2)) r5: U15(tt(),V2) -> U16(isNat(activate(V2))) r6: U16(tt()) -> tt() r7: U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1)) r8: U22(tt(),V1) -> U23(isNat(activate(V1))) r9: U23(tt()) -> tt() r10: U31(tt(),V2) -> U32(isNatKind(activate(V2))) r11: U32(tt()) -> tt() r12: U41(tt()) -> tt() r13: U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N)) r14: U52(tt(),N) -> activate(N) r15: U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N)) r16: U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N)) r17: U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N)) r18: U64(tt(),M,N) -> s(plus(activate(N),activate(M))) r19: isNat(n__0()) -> tt() r20: isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2)) r21: isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1)) r22: isNatKind(n__0()) -> tt() r23: isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2)) r24: isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1))) r25: plus(N,|0|()) -> U51(isNat(N),N) r26: plus(N,s(M)) -> U61(isNat(M),M,N) r27: |0|() -> n__0() r28: plus(X1,X2) -> n__plus(X1,X2) r29: s(X) -> n__s(X) r30: activate(n__0()) -> |0|() r31: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r32: activate(n__s(X)) -> s(activate(X)) r33: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p10, p16} {p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> isNat#(N) p4: isNat#(n__plus(V1,V2)) -> activate#(V1) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: activate#(n__plus(X1,X2)) -> activate#(X2) and R consists of: r1: U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2)) r2: U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2)) r3: U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2)) r4: U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2)) r5: U15(tt(),V2) -> U16(isNat(activate(V2))) r6: U16(tt()) -> tt() r7: U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1)) r8: U22(tt(),V1) -> U23(isNat(activate(V1))) r9: U23(tt()) -> tt() r10: U31(tt(),V2) -> U32(isNatKind(activate(V2))) r11: U32(tt()) -> tt() r12: U41(tt()) -> tt() r13: U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N)) r14: U52(tt(),N) -> activate(N) r15: U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N)) r16: U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N)) r17: U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N)) r18: U64(tt(),M,N) -> s(plus(activate(N),activate(M))) r19: isNat(n__0()) -> tt() r20: isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2)) r21: isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1)) r22: isNatKind(n__0()) -> tt() r23: isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2)) r24: isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1))) r25: plus(N,|0|()) -> U51(isNat(N),N) r26: plus(N,s(M)) -> U61(isNat(M),M,N) r27: |0|() -> n__0() r28: plus(X1,X2) -> n__plus(X1,X2) r29: s(X) -> n__s(X) r30: activate(n__0()) -> |0|() r31: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r32: activate(n__s(X)) -> s(activate(X)) r33: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = x1 + (1,10) n__s_A(x1) = ((1,0),(1,0)) x1 + (4,23) n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (14,11) plus#_A(x1,x2) = x1 + x2 + (13,2) activate_A(x1) = ((1,0),(1,1)) x1 + (0,9) |0|_A() = (7,1) isNat#_A(x1) = x1 + (8,4) U16_A(x1) = (8,3) tt_A() = (7,2) U15_A(x1,x2) = (9,4) isNat_A(x1) = ((1,0),(0,0)) x1 + (0,31) U14_A(x1,x2,x3) = (10,5) U13_A(x1,x2,x3) = ((1,0),(0,0)) x3 + (11,6) isNatKind_A(x1) = ((1,0),(1,0)) x1 + (19,12) U23_A(x1) = ((1,0),(1,0)) x1 + (1,3) U32_A(x1) = (8,3) U64_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (18,47) s_A(x1) = ((1,0),(1,0)) x1 + (4,32) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (14,15) U12_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((1,0),(1,0)) x2 + ((1,0),(1,1)) x3 + (12,1) U22_A(x1,x2) = x2 + (2,0) U31_A(x1,x2) = ((0,0),(1,0)) x1 + (15,1) U41_A(x1) = (22,24) U63_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (18,48) U11_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (13,30) U21_A(x1,x2) = ((1,0),(1,1)) x2 + (3,13) U52_A(x1,x2) = ((1,0),(1,0)) x2 + (8,10) U62_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (18,49) n__0_A() = (7,1) U51_A(x1,x2) = x2 + (20,22) U61_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,1)) x3 + (18,50) precedence: isNatKind = U23 = U41 > activate = U64 > isNat = s = plus = U31 > U32 > U21 > U11 > U13 = U12 = U22 > activate# = n__s = n__plus = plus# = isNat# = U14 = U61 > U62 > U15 > U16 > |0| = tt = U63 = U52 = n__0 = U51 partial status: pi(activate#) = [1] pi(n__s) = [] pi(n__plus) = [1, 2] pi(plus#) = [1, 2] pi(activate) = [1] pi(|0|) = [] pi(isNat#) = [1] pi(U16) = [] pi(tt) = [] pi(U15) = [] pi(isNat) = [] pi(U14) = [] pi(U13) = [] pi(isNatKind) = [] pi(U23) = [] pi(U32) = [] pi(U64) = [] pi(s) = [] pi(plus) = [2] pi(U12) = [3] pi(U22) = [2] pi(U31) = [] pi(U41) = [] pi(U63) = [] pi(U11) = [] pi(U21) = [2] pi(U52) = [] pi(U62) = [] pi(n__0) = [] pi(U51) = [2] pi(U61) = [3] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = (8,18) n__s_A(x1) = (9,15) n__plus_A(x1,x2) = ((1,0),(0,0)) x2 + (17,17) plus#_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (1,1) activate_A(x1) = ((0,0),(1,0)) x1 + (3,2) |0|_A() = (3,2) isNat#_A(x1) = ((1,0),(1,1)) x1 + (5,3) U16_A(x1) = (0,0) tt_A() = (13,21) U15_A(x1,x2) = (0,0) isNat_A(x1) = (21,19) U14_A(x1,x2,x3) = (0,0) U13_A(x1,x2,x3) = (11,2) isNatKind_A(x1) = (16,16) U23_A(x1) = (1,22) U32_A(x1) = (14,22) U64_A(x1,x2,x3) = (11,22) s_A(x1) = (10,0) plus_A(x1,x2) = x2 + (19,18) U12_A(x1,x2,x3) = (12,3) U22_A(x1,x2) = ((1,0),(1,0)) x2 + (3,2) U31_A(x1,x2) = (15,23) U41_A(x1) = (14,22) U63_A(x1,x2,x3) = (12,23) U11_A(x1,x2,x3) = (18,18) U21_A(x1,x2) = ((1,0),(1,1)) x2 + (17,15) U52_A(x1,x2) = (14,22) U62_A(x1,x2,x3) = (22,24) n__0_A() = (0,22) U51_A(x1,x2) = (15,22) U61_A(x1,x2,x3) = (23,25) precedence: U31 > U51 > n__0 > U52 > U61 > isNat = isNatKind = U22 = U21 = U62 > U11 > activate = U13 > U32 > tt = s = U41 > U12 = U63 > U23 > U64 > plus > n__plus > activate# = plus# = |0| = isNat# > n__s > U14 > U15 > U16 partial status: pi(activate#) = [] pi(n__s) = [] pi(n__plus) = [] pi(plus#) = [1, 2] pi(activate) = [] pi(|0|) = [] pi(isNat#) = [1] pi(U16) = [] pi(tt) = [] pi(U15) = [] pi(isNat) = [] pi(U14) = [] pi(U13) = [] pi(isNatKind) = [] pi(U23) = [] pi(U32) = [] pi(U64) = [] pi(s) = [] pi(plus) = [2] pi(U12) = [] pi(U22) = [] pi(U31) = [] pi(U41) = [] pi(U63) = [] pi(U11) = [] pi(U21) = [] pi(U52) = [] pi(U62) = [] pi(n__0) = [] pi(U51) = [] pi(U61) = [] The next rules are strictly ordered: p1, p3, p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: activate#(n__plus(X1,X2)) -> activate#(X1) p3: activate#(n__plus(X1,X2)) -> activate#(X2) and R consists of: r1: U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2)) r2: U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2)) r3: U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2)) r4: U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2)) r5: U15(tt(),V2) -> U16(isNat(activate(V2))) r6: U16(tt()) -> tt() r7: U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1)) r8: U22(tt(),V1) -> U23(isNat(activate(V1))) r9: U23(tt()) -> tt() r10: U31(tt(),V2) -> U32(isNatKind(activate(V2))) r11: U32(tt()) -> tt() r12: U41(tt()) -> tt() r13: U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N)) r14: U52(tt(),N) -> activate(N) r15: U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N)) r16: U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N)) r17: U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N)) r18: U64(tt(),M,N) -> s(plus(activate(N),activate(M))) r19: isNat(n__0()) -> tt() r20: isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2)) r21: isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1)) r22: isNatKind(n__0()) -> tt() r23: isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2)) r24: isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1))) r25: plus(N,|0|()) -> U51(isNat(N),N) r26: plus(N,s(M)) -> U61(isNat(M),M,N) r27: |0|() -> n__0() r28: plus(X1,X2) -> n__plus(X1,X2) r29: s(X) -> n__s(X) r30: activate(n__0()) -> |0|() r31: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r32: activate(n__s(X)) -> s(activate(X)) r33: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> activate#(X1) p2: activate#(n__plus(X1,X2)) -> activate#(X2) and R consists of: r1: U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2)) r2: U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2)) r3: U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2)) r4: U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2)) r5: U15(tt(),V2) -> U16(isNat(activate(V2))) r6: U16(tt()) -> tt() r7: U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1)) r8: U22(tt(),V1) -> U23(isNat(activate(V1))) r9: U23(tt()) -> tt() r10: U31(tt(),V2) -> U32(isNatKind(activate(V2))) r11: U32(tt()) -> tt() r12: U41(tt()) -> tt() r13: U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N)) r14: U52(tt(),N) -> activate(N) r15: U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N)) r16: U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N)) r17: U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N)) r18: U64(tt(),M,N) -> s(plus(activate(N),activate(M))) r19: isNat(n__0()) -> tt() r20: isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2)) r21: isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1)) r22: isNatKind(n__0()) -> tt() r23: isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2)) r24: isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1))) r25: plus(N,|0|()) -> U51(isNat(N),N) r26: plus(N,s(M)) -> U61(isNat(M),M,N) r27: |0|() -> n__0() r28: plus(X1,X2) -> n__plus(X1,X2) r29: s(X) -> n__s(X) r30: activate(n__0()) -> |0|() r31: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r32: activate(n__s(X)) -> s(activate(X)) r33: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = ((1,0),(1,1)) x1 n__plus_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (1,1) precedence: activate# > n__plus partial status: pi(activate#) = [1] pi(n__plus) = [1, 2] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = x1 n__plus_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (1,1) precedence: n__plus > activate# partial status: pi(activate#) = [1] pi(n__plus) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNatKind#(n__s(V1)) -> isNatKind#(activate(V1)) p2: isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2)) p3: U31#(tt(),V2) -> isNatKind#(activate(V2)) p4: isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1)) and R consists of: r1: U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2)) r2: U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2)) r3: U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2)) r4: U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2)) r5: U15(tt(),V2) -> U16(isNat(activate(V2))) r6: U16(tt()) -> tt() r7: U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1)) r8: U22(tt(),V1) -> U23(isNat(activate(V1))) r9: U23(tt()) -> tt() r10: U31(tt(),V2) -> U32(isNatKind(activate(V2))) r11: U32(tt()) -> tt() r12: U41(tt()) -> tt() r13: U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N)) r14: U52(tt(),N) -> activate(N) r15: U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N)) r16: U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N)) r17: U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N)) r18: U64(tt(),M,N) -> s(plus(activate(N),activate(M))) r19: isNat(n__0()) -> tt() r20: isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2)) r21: isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1)) r22: isNatKind(n__0()) -> tt() r23: isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2)) r24: isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1))) r25: plus(N,|0|()) -> U51(isNat(N),N) r26: plus(N,s(M)) -> U61(isNat(M),M,N) r27: |0|() -> n__0() r28: plus(X1,X2) -> n__plus(X1,X2) r29: s(X) -> n__s(X) r30: activate(n__0()) -> |0|() r31: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r32: activate(n__s(X)) -> s(activate(X)) r33: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isNatKind#_A(x1) = x1 + (7,9) n__s_A(x1) = ((1,0),(0,0)) x1 + (30,1) activate_A(x1) = x1 + (0,9) n__plus_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (6,43) U31#_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (1,1) isNatKind_A(x1) = x1 + (6,17) tt_A() = (26,5) U16_A(x1) = (27,4) U15_A(x1,x2) = (30,10) isNat_A(x1) = ((1,0),(1,0)) x1 + (29,2) U14_A(x1,x2,x3) = ((0,0),(1,0)) x2 + ((0,0),(1,0)) x3 + (31,11) U13_A(x1,x2,x3) = (32,4) U23_A(x1) = (27,6) U64_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (36,4) s_A(x1) = ((1,0),(0,0)) x1 + (30,3) plus_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (6,43) U12_A(x1,x2,x3) = (33,8) U22_A(x1,x2) = (28,7) U63_A(x1,x2,x3) = ((1,0),(0,0)) x2 + x3 + (36,5) U11_A(x1,x2,x3) = ((0,0),(1,0)) x1 + (34,1) U21_A(x1,x2) = (29,27) U52_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (1,1) U62_A(x1,x2,x3) = ((1,0),(0,0)) x2 + x3 + (36,15) U32_A(x1) = ((1,0),(0,0)) x1 + (26,6) U51_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (7,1) U61_A(x1,x2,x3) = ((1,0),(0,0)) x2 + x3 + (36,25) n__0_A() = (21,23) U31_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (6,34) U41_A(x1) = x1 + (29,1) |0|_A() = (21,31) precedence: isNatKind# = n__s = activate = n__plus = U31# = isNatKind = tt = U16 = U15 = isNat = U14 = U13 = U23 = U64 = s = plus = U12 = U22 = U63 = U11 = U21 = U52 = U62 = U32 = U51 = U61 = n__0 = U31 = U41 = |0| partial status: pi(isNatKind#) = [] pi(n__s) = [] pi(activate) = [] pi(n__plus) = [] pi(U31#) = [] pi(isNatKind) = [] pi(tt) = [] pi(U16) = [] pi(U15) = [] pi(isNat) = [] pi(U14) = [] pi(U13) = [] pi(U23) = [] pi(U64) = [] pi(s) = [] pi(plus) = [] pi(U12) = [] pi(U22) = [] pi(U63) = [] pi(U11) = [] pi(U21) = [] pi(U52) = [] pi(U62) = [] pi(U32) = [] pi(U51) = [] pi(U61) = [] pi(n__0) = [] pi(U31) = [] pi(U41) = [] pi(|0|) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isNatKind#_A(x1) = x1 + (6,2) n__s_A(x1) = (23,23) activate_A(x1) = ((0,0),(1,0)) x1 + (12,16) n__plus_A(x1,x2) = (9,17) U31#_A(x1,x2) = x1 + (1,0) isNatKind_A(x1) = (13,15) tt_A() = (19,19) U16_A(x1) = (20,1) U15_A(x1,x2) = (21,2) isNat_A(x1) = (26,23) U14_A(x1,x2,x3) = (22,3) U13_A(x1,x2,x3) = (23,0) U23_A(x1) = (20,20) U64_A(x1,x2,x3) = (11,15) s_A(x1) = (1,1) plus_A(x1,x2) = (10,24) U12_A(x1,x2,x3) = (24,13) U22_A(x1,x2) = (21,21) U63_A(x1,x2,x3) = (18,17) U11_A(x1,x2,x3) = (25,14) U21_A(x1,x2) = (22,22) U52_A(x1,x2) = ((1,0),(1,0)) x2 + (13,17) U62_A(x1,x2,x3) = (27,24) U32_A(x1) = (20,20) U51_A(x1,x2) = (0,0) U61_A(x1,x2,x3) = (0,0) n__0_A() = (11,25) U31_A(x1,x2) = (10,18) U41_A(x1) = ((1,0),(1,0)) x1 + (1,1) |0|_A() = (11,24) precedence: activate = U62 > isNat > U31 > isNatKind# = U31# > U51 > U61 > plus > U16 = U64 > s > n__s > U22 = U21 > U11 > n__0 > isNatKind > U41 > U32 > n__plus > U63 > U23 > tt = U12 > U15 = U14 = U13 > U52 > |0| partial status: pi(isNatKind#) = [1] pi(n__s) = [] pi(activate) = [] pi(n__plus) = [] pi(U31#) = [] pi(isNatKind) = [] pi(tt) = [] pi(U16) = [] pi(U15) = [] pi(isNat) = [] pi(U14) = [] pi(U13) = [] pi(U23) = [] pi(U64) = [] pi(s) = [] pi(plus) = [] pi(U12) = [] pi(U22) = [] pi(U63) = [] pi(U11) = [] pi(U21) = [] pi(U52) = [] pi(U62) = [] pi(U32) = [] pi(U51) = [] pi(U61) = [] pi(n__0) = [] pi(U31) = [] pi(U41) = [] pi(|0|) = [] The next rules are strictly ordered: p1, p3, p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2)) and R consists of: r1: U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2)) r2: U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2)) r3: U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2)) r4: U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2)) r5: U15(tt(),V2) -> U16(isNat(activate(V2))) r6: U16(tt()) -> tt() r7: U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1)) r8: U22(tt(),V1) -> U23(isNat(activate(V1))) r9: U23(tt()) -> tt() r10: U31(tt(),V2) -> U32(isNatKind(activate(V2))) r11: U32(tt()) -> tt() r12: U41(tt()) -> tt() r13: U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N)) r14: U52(tt(),N) -> activate(N) r15: U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N)) r16: U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N)) r17: U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N)) r18: U64(tt(),M,N) -> s(plus(activate(N),activate(M))) r19: isNat(n__0()) -> tt() r20: isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2)) r21: isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1)) r22: isNatKind(n__0()) -> tt() r23: isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2)) r24: isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1))) r25: plus(N,|0|()) -> U51(isNat(N),N) r26: plus(N,s(M)) -> U61(isNat(M),M,N) r27: |0|() -> n__0() r28: plus(X1,X2) -> n__plus(X1,X2) r29: s(X) -> n__s(X) r30: activate(n__0()) -> |0|() r31: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r32: activate(n__s(X)) -> s(activate(X)) r33: activate(X) -> X The estimated dependency graph contains the following SCCs: (no SCCs)