YES We show the termination of the TRS R: U11(tt(),N) -> activate(N) U21(tt(),M,N) -> s(plus(activate(N),activate(M))) and(tt(),X) -> activate(X) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) isNat(n__s(V1)) -> isNat(activate(V1)) plus(N,|0|()) -> U11(isNat(N),N) plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) |0|() -> n__0() plus(X1,X2) -> n__plus(X1,X2) isNat(X) -> n__isNat(X) s(X) -> n__s(X) activate(n__0()) -> |0|() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__isNat(X)) -> isNat(X) activate(n__s(X)) -> s(activate(X)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: U21#(tt(),M,N) -> s#(plus(activate(N),activate(M))) p3: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p4: U21#(tt(),M,N) -> activate#(N) p5: U21#(tt(),M,N) -> activate#(M) p6: and#(tt(),X) -> activate#(X) p7: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__s(V1)) -> isNat#(activate(V1)) p12: isNat#(n__s(V1)) -> activate#(V1) p13: plus#(N,|0|()) -> U11#(isNat(N),N) p14: plus#(N,|0|()) -> isNat#(N) p15: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p16: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p17: plus#(N,s(M)) -> isNat#(M) p18: activate#(n__0()) -> |0|#() p19: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p20: activate#(n__plus(X1,X2)) -> activate#(X1) p21: activate#(n__plus(X1,X2)) -> activate#(X2) p22: activate#(n__isNat(X)) -> isNat#(X) p23: activate#(n__s(X)) -> s#(activate(X)) p24: activate#(n__s(X)) -> activate#(X) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p19, p20, p21, p22, p24} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__isNat(X)) -> isNat#(X) p4: isNat#(n__s(V1)) -> activate#(V1) p5: activate#(n__plus(X1,X2)) -> activate#(X2) p6: activate#(n__plus(X1,X2)) -> activate#(X1) p7: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p8: plus#(N,s(M)) -> isNat#(M) p9: isNat#(n__s(V1)) -> isNat#(activate(V1)) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__plus(V1,V2)) -> activate#(V1) p12: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p13: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p14: and#(tt(),X) -> activate#(X) p15: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p16: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p17: U21#(tt(),M,N) -> activate#(M) p18: U21#(tt(),M,N) -> activate#(N) p19: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p20: plus#(N,|0|()) -> isNat#(N) p21: plus#(N,|0|()) -> U11#(isNat(N),N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: U11#_A(x1,x2) = ((1,0),(1,0)) x2 + (14,41) tt_A() = (40,37) activate#_A(x1) = x1 + (13,40) n__s_A(x1) = ((1,0),(0,0)) x1 + (28,31) n__isNat_A(x1) = ((1,0),(0,0)) x1 + (15,7) isNat#_A(x1) = ((1,0),(0,0)) x1 + (27,39) n__plus_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (14,5) plus#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (26,14) activate_A(x1) = x1 + (0,32) s_A(x1) = ((1,0),(0,0)) x1 + (28,34) and#_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (14,1) isNat_A(x1) = ((1,0),(0,0)) x1 + (15,38) U21#_A(x1,x2,x3) = x2 + x3 + (29,75) and_A(x1,x2) = ((1,0),(0,0)) x2 + (14,33) |0|_A() = (26,42) U11_A(x1,x2) = ((1,0),(1,0)) x2 + (27,33) U21_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (42,35) plus_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (14,36) n__0_A() = (26,11) precedence: tt = plus# = and > isNat# > U21 > activate = s = |0| > activate# = and# > n__s > U11# = U11 = plus > U21# > isNat > n__isNat = n__plus > n__0 partial status: pi(U11#) = [] pi(tt) = [] pi(activate#) = [] pi(n__s) = [] pi(n__isNat) = [] pi(isNat#) = [] pi(n__plus) = [] pi(plus#) = [2] pi(activate) = [1] pi(s) = [] pi(and#) = [2] pi(isNat) = [] pi(U21#) = [2, 3] pi(and) = [] pi(|0|) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: U11#_A(x1,x2) = (5,21) tt_A() = (3,6) activate#_A(x1) = (4,13) n__s_A(x1) = (10,2) n__isNat_A(x1) = (5,22) isNat#_A(x1) = (9,14) n__plus_A(x1,x2) = (6,12) plus#_A(x1,x2) = x2 + (2,5) activate_A(x1) = x1 + (2,2) s_A(x1) = (10,5) and#_A(x1,x2) = (5,4) isNat_A(x1) = (8,21) U21#_A(x1,x2,x3) = x2 + (11,13) and_A(x1,x2) = (5,11) |0|_A() = (10,15) U11_A(x1,x2) = (1,16) U21_A(x1,x2,x3) = (2,6) plus_A(x1,x2) = (7,13) n__0_A() = (9,14) precedence: U11# > U21# > plus# > n__0 > U11 > n__isNat > isNat# > |0| > plus > s = and > activate > n__s > isNat > tt > U21 > and# > activate# > n__plus partial status: pi(U11#) = [] pi(tt) = [] pi(activate#) = [] pi(n__s) = [] pi(n__isNat) = [] pi(isNat#) = [] pi(n__plus) = [] pi(plus#) = [2] pi(activate) = [] pi(s) = [] pi(and#) = [] pi(isNat) = [] pi(U21#) = [2] pi(and) = [] pi(|0|) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p1, p3, p4, p7, p8, p11, p12, p13, p15, p16, p17, p18, p19, p20 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> activate#(X2) p3: activate#(n__plus(X1,X2)) -> activate#(X1) p4: isNat#(n__s(V1)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> activate#(V2) p6: and#(tt(),X) -> activate#(X) p7: plus#(N,|0|()) -> U11#(isNat(N),N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p4} {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> isNat#(activate(V1)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isNat#_A(x1) = ((1,0),(0,0)) x1 + (12,1) n__s_A(x1) = ((1,0),(0,0)) x1 + (12,3) activate_A(x1) = ((1,0),(1,1)) x1 + (0,3) U11_A(x1,x2) = ((1,0),(1,1)) x2 + (1,4) tt_A() = (11,12) U21_A(x1,x2,x3) = ((1,0),(0,0)) x2 + x3 + (24,10) s_A(x1) = ((1,0),(0,0)) x1 + (12,9) plus_A(x1,x2) = x1 + x2 + (12,5) and_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (1,1) isNat_A(x1) = ((1,0),(0,0)) x1 + (11,13) n__0_A() = (0,13) n__plus_A(x1,x2) = x1 + x2 + (12,2) n__isNat_A(x1) = ((1,0),(0,0)) x1 + (11,0) |0|_A() = (0,14) precedence: isNat# > |0| > isNat > n__s = s > and > n__0 > tt > activate = U11 = U21 = plus = n__plus = n__isNat partial status: pi(isNat#) = [] pi(n__s) = [] pi(activate) = [] pi(U11) = [2] pi(tt) = [] pi(U21) = [] pi(s) = [] pi(plus) = [1, 2] pi(and) = [] pi(isNat) = [] pi(n__0) = [] pi(n__plus) = [] pi(n__isNat) = [] pi(|0|) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isNat#_A(x1) = (0,0) n__s_A(x1) = (9,3) activate_A(x1) = (8,6) U11_A(x1,x2) = (9,7) tt_A() = (1,1) U21_A(x1,x2,x3) = (12,8) s_A(x1) = (10,7) plus_A(x1,x2) = ((1,0),(0,0)) x2 + (3,9) and_A(x1,x2) = (9,5) isNat_A(x1) = (7,2) n__0_A() = (2,0) n__plus_A(x1,x2) = (2,4) n__isNat_A(x1) = (1,3) |0|_A() = (3,8) precedence: plus = and = n__plus > U11 > U21 > tt > activate = n__0 > n__s = s = isNat = |0| > isNat# = n__isNat partial status: pi(isNat#) = [] pi(n__s) = [] pi(activate) = [] pi(U11) = [] pi(tt) = [] pi(U21) = [] pi(s) = [] pi(plus) = [] pi(and) = [] pi(isNat) = [] pi(n__0) = [] pi(n__plus) = [] pi(n__isNat) = [] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> activate#(X1) p3: activate#(n__plus(X1,X2)) -> activate#(X2) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = ((1,0),(1,1)) x1 + (1,2) n__s_A(x1) = ((1,0),(0,0)) x1 + (2,3) n__plus_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (2,1) precedence: n__plus > activate# > n__s partial status: pi(activate#) = [1] pi(n__s) = [] pi(n__plus) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = (0,0) n__s_A(x1) = (1,1) n__plus_A(x1,x2) = (1,1) precedence: n__s > activate# = n__plus partial status: pi(activate#) = [] pi(n__s) = [] pi(n__plus) = [] The next rules are strictly ordered: p2, p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = ((1,0),(1,1)) x1 + (2,2) n__s_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: activate# = n__s partial status: pi(activate#) = [] pi(n__s) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = ((1,0),(0,0)) x1 n__s_A(x1) = (1,1) precedence: n__s > activate# partial status: pi(activate#) = [] pi(n__s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.