YES We show the termination of the TRS R: f(x) -> s(x) f(s(s(x))) -> s(f(f(x))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(s(x))) -> f#(f(x)) p2: f#(s(s(x))) -> f#(x) and R consists of: r1: f(x) -> s(x) r2: f(s(s(x))) -> s(f(f(x))) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(s(x))) -> f#(f(x)) p2: f#(s(s(x))) -> f#(x) and R consists of: r1: f(x) -> s(x) r2: f(s(s(x))) -> s(f(f(x))) The set of usable rules consists of r1, r2 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: f#_A(x1) = ((1,0),(0,0)) x1 s_A(x1) = ((1,0),(1,0)) x1 + (2,1) f_A(x1) = ((1,0),(1,0)) x1 + (2,2) precedence: s = f > f# partial status: pi(f#) = [] pi(s) = [] pi(f) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(s(x))) -> f#(x) and R consists of: r1: f(x) -> s(x) r2: f(s(s(x))) -> s(f(f(x))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(s(x))) -> f#(x) and R consists of: r1: f(x) -> s(x) r2: f(s(s(x))) -> s(f(f(x))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: f#_A(x1) = ((0,0),(1,0)) x1 + (1,2) s_A(x1) = ((1,0),(0,0)) x1 + (2,1) precedence: f# = s partial status: pi(f#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.