YES We show the termination of the TRS R: minus(x,|0|()) -> x minus(s(x),s(y)) -> minus(x,y) quot(|0|(),s(y)) -> |0|() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) plus(|0|(),y) -> y plus(s(x),y) -> s(plus(x,y)) plus(minus(x,s(|0|())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(|0|()))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) p2: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) p3: quot#(s(x),s(y)) -> minus#(x,y) p4: plus#(s(x),y) -> plus#(x,y) p5: plus#(minus(x,s(|0|())),minus(y,s(s(z)))) -> plus#(minus(y,s(s(z))),minus(x,s(|0|()))) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: plus(minus(x,s(|0|())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(|0|()))) The estimated dependency graph contains the following SCCs: {p2} {p1} {p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: plus(minus(x,s(|0|())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(|0|()))) The set of usable rules consists of r1, r2 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: quot#_A(x1,x2) = ((0,0),(1,0)) x1 + (1,1) s_A(x1) = x1 + (3,5) minus_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,0),(1,0)) x2 + (2,6) |0|_A() = (1,0) precedence: minus = |0| > quot# = s partial status: pi(quot#) = [] pi(s) = [] pi(minus) = [1] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: plus(minus(x,s(|0|())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(|0|()))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: minus#_A(x1,x2) = x1 s_A(x1) = x1 + (1,1) precedence: s > minus# partial status: pi(minus#) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(s(x),y) -> plus#(x,y) p2: plus#(minus(x,s(|0|())),minus(y,s(s(z)))) -> plus#(minus(y,s(s(z))),minus(x,s(|0|()))) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: plus(minus(x,s(|0|())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(|0|()))) The set of usable rules consists of r1, r2 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: plus#_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (7,1) s_A(x1) = ((1,0),(1,1)) x1 + (3,13) minus_A(x1,x2) = x1 + (5,30) |0|_A() = (1,12) precedence: plus# = s = minus = |0| partial status: pi(plus#) = [] pi(s) = [1] pi(minus) = [1] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: plus#(minus(x,s(|0|())),minus(y,s(s(z)))) -> plus#(minus(y,s(s(z))),minus(x,s(|0|()))) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: plus(minus(x,s(|0|())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(|0|()))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(minus(x,s(|0|())),minus(y,s(s(z)))) -> plus#(minus(y,s(s(z))),minus(x,s(|0|()))) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: plus(minus(x,s(|0|())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(|0|()))) The set of usable rules consists of r1, r2 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: plus#_A(x1,x2) = x1 + ((1,0),(1,0)) x2 + (1,1) minus_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (0,1) s_A(x1) = ((1,0),(0,0)) x1 + (3,5) |0|_A() = (1,7) precedence: plus# = minus > s = |0| partial status: pi(plus#) = [] pi(minus) = [] pi(s) = [] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.