YES We show the termination of the TRS R: minus(x,|0|()) -> x minus(s(x),s(y)) -> minus(x,y) quot(|0|(),s(y)) -> |0|() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) le(|0|(),y) -> true() le(s(x),|0|()) -> false() le(s(x),s(y)) -> le(x,y) app(nil(),y) -> y app(add(n,x),y) -> add(n,app(x,y)) low(n,nil()) -> nil() low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) if_low(true(),n,add(m,x)) -> add(m,low(n,x)) if_low(false(),n,add(m,x)) -> low(n,x) high(n,nil()) -> nil() high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) if_high(true(),n,add(m,x)) -> high(n,x) if_high(false(),n,add(m,x)) -> add(m,high(n,x)) quicksort(nil()) -> nil() quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) p2: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) p3: quot#(s(x),s(y)) -> minus#(x,y) p4: le#(s(x),s(y)) -> le#(x,y) p5: app#(add(n,x),y) -> app#(x,y) p6: low#(n,add(m,x)) -> if_low#(le(m,n),n,add(m,x)) p7: low#(n,add(m,x)) -> le#(m,n) p8: if_low#(true(),n,add(m,x)) -> low#(n,x) p9: if_low#(false(),n,add(m,x)) -> low#(n,x) p10: high#(n,add(m,x)) -> if_high#(le(m,n),n,add(m,x)) p11: high#(n,add(m,x)) -> le#(m,n) p12: if_high#(true(),n,add(m,x)) -> high#(n,x) p13: if_high#(false(),n,add(m,x)) -> high#(n,x) p14: quicksort#(add(n,x)) -> app#(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) p15: quicksort#(add(n,x)) -> quicksort#(low(n,x)) p16: quicksort#(add(n,x)) -> low#(n,x) p17: quicksort#(add(n,x)) -> quicksort#(high(n,x)) p18: quicksort#(add(n,x)) -> high#(n,x) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: low(n,nil()) -> nil() r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x)) r13: if_low(false(),n,add(m,x)) -> low(n,x) r14: high(n,nil()) -> nil() r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) r16: if_high(true(),n,add(m,x)) -> high(n,x) r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x)) r18: quicksort(nil()) -> nil() r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) The estimated dependency graph contains the following SCCs: {p2} {p1} {p15, p17} {p10, p12, p13} {p6, p8, p9} {p4} {p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: low(n,nil()) -> nil() r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x)) r13: if_low(false(),n,add(m,x)) -> low(n,x) r14: high(n,nil()) -> nil() r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) r16: if_high(true(),n,add(m,x)) -> high(n,x) r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x)) r18: quicksort(nil()) -> nil() r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) The set of usable rules consists of r1, r2 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: quot#_A(x1,x2) = ((0,0),(1,0)) x1 + (1,1) s_A(x1) = x1 + (3,5) minus_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,0),(1,0)) x2 + (2,6) |0|_A() = (1,0) precedence: minus = |0| > quot# = s partial status: pi(quot#) = [] pi(s) = [] pi(minus) = [1] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: low(n,nil()) -> nil() r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x)) r13: if_low(false(),n,add(m,x)) -> low(n,x) r14: high(n,nil()) -> nil() r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) r16: if_high(true(),n,add(m,x)) -> high(n,x) r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x)) r18: quicksort(nil()) -> nil() r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: minus#_A(x1,x2) = x1 s_A(x1) = x1 + (1,1) precedence: s > minus# partial status: pi(minus#) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: quicksort#(add(n,x)) -> quicksort#(high(n,x)) p2: quicksort#(add(n,x)) -> quicksort#(low(n,x)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: low(n,nil()) -> nil() r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x)) r13: if_low(false(),n,add(m,x)) -> low(n,x) r14: high(n,nil()) -> nil() r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) r16: if_high(true(),n,add(m,x)) -> high(n,x) r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x)) r18: quicksort(nil()) -> nil() r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) The set of usable rules consists of r5, r6, r7, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: quicksort#_A(x1) = x1 add_A(x1,x2) = ((1,0),(1,0)) x2 + (6,3) high_A(x1,x2) = ((1,0),(1,0)) x2 + (3,2) low_A(x1,x2) = ((1,0),(1,0)) x2 + (1,2) le_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (8,0) |0|_A() = (1,1) true_A() = (0,0) s_A(x1) = ((1,0),(0,0)) x1 + (1,1) false_A() = (0,0) if_low_A(x1,x2,x3) = ((1,0),(1,0)) x3 + (1,1) if_high_A(x1,x2,x3) = x3 + (3,4) nil_A() = (1,1) precedence: nil > high = le = true = s = false = if_high > low = if_low > quicksort# = add = |0| partial status: pi(quicksort#) = [1] pi(add) = [] pi(high) = [] pi(low) = [] pi(le) = [] pi(|0|) = [] pi(true) = [] pi(s) = [] pi(false) = [] pi(if_low) = [] pi(if_high) = [] pi(nil) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: quicksort#(add(n,x)) -> quicksort#(low(n,x)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: low(n,nil()) -> nil() r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x)) r13: if_low(false(),n,add(m,x)) -> low(n,x) r14: high(n,nil()) -> nil() r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) r16: if_high(true(),n,add(m,x)) -> high(n,x) r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x)) r18: quicksort(nil()) -> nil() r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: quicksort#(add(n,x)) -> quicksort#(low(n,x)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: low(n,nil()) -> nil() r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x)) r13: if_low(false(),n,add(m,x)) -> low(n,x) r14: high(n,nil()) -> nil() r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) r16: if_high(true(),n,add(m,x)) -> high(n,x) r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x)) r18: quicksort(nil()) -> nil() r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) The set of usable rules consists of r5, r6, r7, r10, r11, r12, r13 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: quicksort#_A(x1) = x1 + (0,1) add_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (3,0) low_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (2,5) le_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (2,6) |0|_A() = (4,4) true_A() = (1,3) s_A(x1) = ((1,0),(1,1)) x1 + (1,1) false_A() = (3,2) if_low_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (2,1) nil_A() = (1,1) precedence: le > add = |0| = if_low > low > true = false > quicksort# = s > nil partial status: pi(quicksort#) = [1] pi(add) = [] pi(low) = [] pi(le) = [1] pi(|0|) = [] pi(true) = [] pi(s) = [1] pi(false) = [] pi(if_low) = [] pi(nil) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_high#(false(),n,add(m,x)) -> high#(n,x) p2: high#(n,add(m,x)) -> if_high#(le(m,n),n,add(m,x)) p3: if_high#(true(),n,add(m,x)) -> high#(n,x) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: low(n,nil()) -> nil() r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x)) r13: if_low(false(),n,add(m,x)) -> low(n,x) r14: high(n,nil()) -> nil() r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) r16: if_high(true(),n,add(m,x)) -> high(n,x) r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x)) r18: quicksort(nil()) -> nil() r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) The set of usable rules consists of r5, r6, r7 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: if_high#_A(x1,x2,x3) = x3 + (0,1) false_A() = (1,2) add_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (3,1) high#_A(x1,x2) = x2 + (2,3) le_A(x1,x2) = (6,5) true_A() = (2,4) |0|_A() = (3,1) s_A(x1) = (7,6) precedence: false = add = high# = le = true = |0| > if_high# > s partial status: pi(if_high#) = [3] pi(false) = [] pi(add) = [1, 2] pi(high#) = [] pi(le) = [] pi(true) = [] pi(|0|) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: high#(n,add(m,x)) -> if_high#(le(m,n),n,add(m,x)) p2: if_high#(true(),n,add(m,x)) -> high#(n,x) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: low(n,nil()) -> nil() r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x)) r13: if_low(false(),n,add(m,x)) -> low(n,x) r14: high(n,nil()) -> nil() r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) r16: if_high(true(),n,add(m,x)) -> high(n,x) r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x)) r18: quicksort(nil()) -> nil() r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: high#(n,add(m,x)) -> if_high#(le(m,n),n,add(m,x)) p2: if_high#(true(),n,add(m,x)) -> high#(n,x) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: low(n,nil()) -> nil() r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x)) r13: if_low(false(),n,add(m,x)) -> low(n,x) r14: high(n,nil()) -> nil() r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) r16: if_high(true(),n,add(m,x)) -> high(n,x) r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x)) r18: quicksort(nil()) -> nil() r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) The set of usable rules consists of r5, r6, r7 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: high#_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(0,0)) x2 + (2,2) add_A(x1,x2) = x2 + (3,3) if_high#_A(x1,x2,x3) = x2 + ((1,0),(0,0)) x3 + (1,1) le_A(x1,x2) = x2 + (6,4) true_A() = (3,5) |0|_A() = (2,1) s_A(x1) = x1 + (7,4) false_A() = (1,2) precedence: high# = add > if_high# > le = true = |0| = s > false partial status: pi(high#) = [] pi(add) = [2] pi(if_high#) = [] pi(le) = [2] pi(true) = [] pi(|0|) = [] pi(s) = [1] pi(false) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: high#(n,add(m,x)) -> if_high#(le(m,n),n,add(m,x)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: low(n,nil()) -> nil() r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x)) r13: if_low(false(),n,add(m,x)) -> low(n,x) r14: high(n,nil()) -> nil() r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) r16: if_high(true(),n,add(m,x)) -> high(n,x) r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x)) r18: quicksort(nil()) -> nil() r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_low#(false(),n,add(m,x)) -> low#(n,x) p2: low#(n,add(m,x)) -> if_low#(le(m,n),n,add(m,x)) p3: if_low#(true(),n,add(m,x)) -> low#(n,x) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: low(n,nil()) -> nil() r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x)) r13: if_low(false(),n,add(m,x)) -> low(n,x) r14: high(n,nil()) -> nil() r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) r16: if_high(true(),n,add(m,x)) -> high(n,x) r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x)) r18: quicksort(nil()) -> nil() r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) The set of usable rules consists of r5, r6, r7 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: if_low#_A(x1,x2,x3) = x3 + (0,1) false_A() = (1,2) add_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (3,1) low#_A(x1,x2) = x2 + (2,3) le_A(x1,x2) = (6,5) true_A() = (2,4) |0|_A() = (3,1) s_A(x1) = (7,6) precedence: false = add = low# = le = true = |0| > if_low# > s partial status: pi(if_low#) = [3] pi(false) = [] pi(add) = [1, 2] pi(low#) = [] pi(le) = [] pi(true) = [] pi(|0|) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: low#(n,add(m,x)) -> if_low#(le(m,n),n,add(m,x)) p2: if_low#(true(),n,add(m,x)) -> low#(n,x) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: low(n,nil()) -> nil() r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x)) r13: if_low(false(),n,add(m,x)) -> low(n,x) r14: high(n,nil()) -> nil() r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) r16: if_high(true(),n,add(m,x)) -> high(n,x) r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x)) r18: quicksort(nil()) -> nil() r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: low#(n,add(m,x)) -> if_low#(le(m,n),n,add(m,x)) p2: if_low#(true(),n,add(m,x)) -> low#(n,x) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: low(n,nil()) -> nil() r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x)) r13: if_low(false(),n,add(m,x)) -> low(n,x) r14: high(n,nil()) -> nil() r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) r16: if_high(true(),n,add(m,x)) -> high(n,x) r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x)) r18: quicksort(nil()) -> nil() r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) The set of usable rules consists of r5, r6, r7 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: low#_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(0,0)) x2 + (2,2) add_A(x1,x2) = x2 + (3,3) if_low#_A(x1,x2,x3) = x2 + ((1,0),(0,0)) x3 + (1,1) le_A(x1,x2) = x2 + (6,4) true_A() = (3,5) |0|_A() = (2,1) s_A(x1) = x1 + (7,4) false_A() = (1,2) precedence: low# = add > if_low# > le = true = |0| = s > false partial status: pi(low#) = [] pi(add) = [2] pi(if_low#) = [] pi(le) = [2] pi(true) = [] pi(|0|) = [] pi(s) = [1] pi(false) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: low#(n,add(m,x)) -> if_low#(le(m,n),n,add(m,x)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: low(n,nil()) -> nil() r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x)) r13: if_low(false(),n,add(m,x)) -> low(n,x) r14: high(n,nil()) -> nil() r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) r16: if_high(true(),n,add(m,x)) -> high(n,x) r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x)) r18: quicksort(nil()) -> nil() r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: low(n,nil()) -> nil() r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x)) r13: if_low(false(),n,add(m,x)) -> low(n,x) r14: high(n,nil()) -> nil() r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) r16: if_high(true(),n,add(m,x)) -> high(n,x) r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x)) r18: quicksort(nil()) -> nil() r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: le#_A(x1,x2) = x1 s_A(x1) = x1 + (1,1) precedence: s > le# partial status: pi(le#) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(add(n,x),y) -> app#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: low(n,nil()) -> nil() r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x)) r13: if_low(false(),n,add(m,x)) -> low(n,x) r14: high(n,nil()) -> nil() r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) r16: if_high(true(),n,add(m,x)) -> high(n,x) r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x)) r18: quicksort(nil()) -> nil() r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: app#_A(x1,x2) = ((1,0),(0,0)) x1 + (1,1) add_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(0,0)) x2 + (2,2) precedence: app# = add partial status: pi(app#) = [] pi(add) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.