YES We show the termination of the TRS R: le(|0|(),y) -> true() le(s(x),|0|()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,|0|()) -> x minus(s(x),s(y)) -> minus(x,y) gcd(|0|(),y) -> y gcd(s(x),|0|()) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) p2: minus#(s(x),s(y)) -> minus#(x,y) p3: gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y)) p4: gcd#(s(x),s(y)) -> le#(y,x) p5: if_gcd#(true(),s(x),s(y)) -> gcd#(minus(x,y),s(y)) p6: if_gcd#(true(),s(x),s(y)) -> minus#(x,y) p7: if_gcd#(false(),s(x),s(y)) -> gcd#(minus(y,x),s(x)) p8: if_gcd#(false(),s(x),s(y)) -> minus#(y,x) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(x,|0|()) -> x r5: minus(s(x),s(y)) -> minus(x,y) r6: gcd(|0|(),y) -> y r7: gcd(s(x),|0|()) -> s(x) r8: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r9: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r10: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) The estimated dependency graph contains the following SCCs: {p3, p5, p7} {p1} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_gcd#(false(),s(x),s(y)) -> gcd#(minus(y,x),s(x)) p2: gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y)) p3: if_gcd#(true(),s(x),s(y)) -> gcd#(minus(x,y),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(x,|0|()) -> x r5: minus(s(x),s(y)) -> minus(x,y) r6: gcd(|0|(),y) -> y r7: gcd(s(x),|0|()) -> s(x) r8: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r9: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r10: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) The set of usable rules consists of r1, r2, r3, r4, r5 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: if_gcd#_A(x1,x2,x3) = ((1,0),(0,0)) x1 + ((0,0),(1,0)) x2 + ((0,0),(1,0)) x3 + (1,1) false_A() = (2,9) s_A(x1) = ((1,0),(1,1)) x1 + (5,14) gcd#_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (3,2) minus_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,0),(1,0)) x2 + (1,10) le_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (2,13) true_A() = (2,1) |0|_A() = (3,2) precedence: le > false > if_gcd# = s = gcd# = minus > true = |0| partial status: pi(if_gcd#) = [] pi(false) = [] pi(s) = [] pi(gcd#) = [] pi(minus) = [1] pi(le) = [] pi(true) = [] pi(|0|) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if_gcd#(false(),s(x),s(y)) -> gcd#(minus(y,x),s(x)) p2: if_gcd#(true(),s(x),s(y)) -> gcd#(minus(x,y),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(x,|0|()) -> x r5: minus(s(x),s(y)) -> minus(x,y) r6: gcd(|0|(),y) -> y r7: gcd(s(x),|0|()) -> s(x) r8: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r9: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r10: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(x,|0|()) -> x r5: minus(s(x),s(y)) -> minus(x,y) r6: gcd(|0|(),y) -> y r7: gcd(s(x),|0|()) -> s(x) r8: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r9: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r10: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: le#_A(x1,x2) = x1 s_A(x1) = x1 + (1,1) precedence: s > le# partial status: pi(le#) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(x,|0|()) -> x r5: minus(s(x),s(y)) -> minus(x,y) r6: gcd(|0|(),y) -> y r7: gcd(s(x),|0|()) -> s(x) r8: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r9: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r10: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: minus#_A(x1,x2) = x1 s_A(x1) = x1 + (1,1) precedence: s > minus# partial status: pi(minus#) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.