YES We show the termination of the TRS R: g(A()) -> A() g(B()) -> A() g(B()) -> B() g(C()) -> A() g(C()) -> B() g(C()) -> C() foldf(x,nil()) -> x foldf(x,cons(y,z)) -> f(foldf(x,z),y) f(t,x) -> |f'|(t,g(x)) |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: foldf#(x,cons(y,z)) -> f#(foldf(x,z),y) p2: foldf#(x,cons(y,z)) -> foldf#(x,z) p3: f#(t,x) -> |f'|#(t,g(x)) p4: f#(t,x) -> g#(x) p5: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) p6: |f'|#(triple(a,b,c),A()) -> |f''|#(foldf(triple(cons(A(),a),nil(),c),b)) p7: |f'|#(triple(a,b,c),A()) -> foldf#(triple(cons(A(),a),nil(),c),b) p8: |f''|#(triple(a,b,c)) -> foldf#(triple(a,b,nil()),c) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: foldf#(x,cons(y,z)) -> f#(foldf(x,z),y) p2: f#(t,x) -> |f'|#(t,g(x)) p3: |f'|#(triple(a,b,c),A()) -> foldf#(triple(cons(A(),a),nil(),c),b) p4: foldf#(x,cons(y,z)) -> foldf#(x,z) p5: |f'|#(triple(a,b,c),A()) -> |f''|#(foldf(triple(cons(A(),a),nil(),c),b)) p6: |f''|#(triple(a,b,c)) -> foldf#(triple(a,b,nil()),c) p7: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: foldf#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (37,37) cons_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (55,58) f#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (90,36) foldf_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (1,59) |f'|#_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (50,1) g_A(x1) = x1 + (0,58) triple_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (6,35) A_A() = (0,38) nil_A() = (5,0) |f''|#_A(x1) = ((1,0),(0,0)) x1 + (43,39) B_A() = (40,0) |f''|_A(x1) = ((1,0),(1,1)) x1 + (7,19) |f'|_A(x1,x2) = x1 + ((1,0),(1,0)) x2 + (55,56) C_A() = (41,133) f_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (55,57) precedence: foldf# = f# = foldf = |f'|# = g = triple = |f''|# = B = |f''| > nil > cons = A = |f'| = C = f partial status: pi(foldf#) = [] pi(cons) = [] pi(f#) = [] pi(foldf) = [] pi(|f'|#) = [] pi(g) = [] pi(triple) = [] pi(A) = [] pi(nil) = [] pi(|f''|#) = [] pi(B) = [] pi(|f''|) = [] pi(|f'|) = [] pi(C) = [] pi(f) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: foldf#(x,cons(y,z)) -> f#(foldf(x,z),y) p2: f#(t,x) -> |f'|#(t,g(x)) p3: foldf#(x,cons(y,z)) -> foldf#(x,z) p4: |f'|#(triple(a,b,c),A()) -> |f''|#(foldf(triple(cons(A(),a),nil(),c),b)) p5: |f''|#(triple(a,b,c)) -> foldf#(triple(a,b,nil()),c) p6: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: foldf#(x,cons(y,z)) -> f#(foldf(x,z),y) p2: f#(t,x) -> |f'|#(t,g(x)) p3: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) p4: |f'|#(triple(a,b,c),A()) -> |f''|#(foldf(triple(cons(A(),a),nil(),c),b)) p5: |f''|#(triple(a,b,c)) -> foldf#(triple(a,b,nil()),c) p6: foldf#(x,cons(y,z)) -> foldf#(x,z) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: foldf#_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (5,9) cons_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 f#_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (3,5) foldf_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + (1,3) |f'|#_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (2,4) g_A(x1) = ((1,0),(0,0)) x1 + (0,6) triple_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (0,10) B_A() = (17,3) A_A() = (15,2) |f''|#_A(x1) = ((1,0),(0,0)) x1 + (14,13) nil_A() = (1,12) |f''|_A(x1) = ((1,0),(0,0)) x1 + (12,11) |f'|_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + (0,1) C_A() = (18,4) f_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + (0,2) precedence: cons = foldf = |f''| = |f'| = f > C > g = B = A > f# > foldf# = |f'|# = triple = |f''|# = nil partial status: pi(foldf#) = [] pi(cons) = [] pi(f#) = [] pi(foldf) = [] pi(|f'|#) = [1] pi(g) = [] pi(triple) = [] pi(B) = [] pi(A) = [] pi(|f''|#) = [] pi(nil) = [] pi(|f''|) = [] pi(|f'|) = [] pi(C) = [] pi(f) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: foldf#(x,cons(y,z)) -> f#(foldf(x,z),y) p2: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) p3: |f'|#(triple(a,b,c),A()) -> |f''|#(foldf(triple(cons(A(),a),nil(),c),b)) p4: |f''|#(triple(a,b,c)) -> foldf#(triple(a,b,nil()),c) p5: foldf#(x,cons(y,z)) -> foldf#(x,z) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The estimated dependency graph contains the following SCCs: {p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: foldf#(x,cons(y,z)) -> foldf#(x,z) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: foldf#_A(x1,x2) = ((1,0),(1,0)) x2 + (1,0) cons_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + (1,0) precedence: cons > foldf# partial status: pi(foldf#) = [] pi(cons) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.