YES We show the termination of the TRS R: p(m,n,s(r)) -> p(m,r,n) p(m,s(n),|0|()) -> p(|0|(),n,m) p(m,|0|(),|0|()) -> m -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: p#(m,n,s(r)) -> p#(m,r,n) p2: p#(m,s(n),|0|()) -> p#(|0|(),n,m) and R consists of: r1: p(m,n,s(r)) -> p(m,r,n) r2: p(m,s(n),|0|()) -> p(|0|(),n,m) r3: p(m,|0|(),|0|()) -> m The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: p#(m,n,s(r)) -> p#(m,r,n) p2: p#(m,s(n),|0|()) -> p#(|0|(),n,m) and R consists of: r1: p(m,n,s(r)) -> p(m,r,n) r2: p(m,s(n),|0|()) -> p(|0|(),n,m) r3: p(m,|0|(),|0|()) -> m The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: p#_A(x1,x2,x3) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + ((1,0),(0,0)) x3 + (3,1) s_A(x1) = ((1,0),(1,1)) x1 + (2,3) |0|_A() = (1,2) precedence: p# = |0| > s partial status: pi(p#) = [] pi(s) = [] pi(|0|) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: p#(m,n,s(r)) -> p#(m,r,n) and R consists of: r1: p(m,n,s(r)) -> p(m,r,n) r2: p(m,s(n),|0|()) -> p(|0|(),n,m) r3: p(m,|0|(),|0|()) -> m The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: p#(m,n,s(r)) -> p#(m,r,n) and R consists of: r1: p(m,n,s(r)) -> p(m,r,n) r2: p(m,s(n),|0|()) -> p(|0|(),n,m) r3: p(m,|0|(),|0|()) -> m The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: p#_A(x1,x2,x3) = x1 + ((1,0),(1,1)) x2 + ((1,0),(1,1)) x3 + (1,2) s_A(x1) = x1 + (2,1) precedence: s > p# partial status: pi(p#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.