YES We show the termination of the TRS R: lt(|0|(),s(X)) -> true() lt(s(X),|0|()) -> false() lt(s(X),s(Y)) -> lt(X,Y) append(nil(),Y) -> Y append(add(N,X),Y) -> add(N,append(X,Y)) split(N,nil()) -> pair(nil(),nil()) split(N,add(M,Y)) -> f_1(split(N,Y),N,M,Y) f_1(pair(X,Z),N,M,Y) -> f_2(lt(N,M),N,M,Y,X,Z) f_2(true(),N,M,Y,X,Z) -> pair(X,add(M,Z)) f_2(false(),N,M,Y,X,Z) -> pair(add(M,X),Z) qsort(nil()) -> nil() qsort(add(N,X)) -> f_3(split(N,X),N,X) f_3(pair(Y,Z),N,X) -> append(qsort(Y),add(X,qsort(Z))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: lt#(s(X),s(Y)) -> lt#(X,Y) p2: append#(add(N,X),Y) -> append#(X,Y) p3: split#(N,add(M,Y)) -> f_1#(split(N,Y),N,M,Y) p4: split#(N,add(M,Y)) -> split#(N,Y) p5: f_1#(pair(X,Z),N,M,Y) -> f_2#(lt(N,M),N,M,Y,X,Z) p6: f_1#(pair(X,Z),N,M,Y) -> lt#(N,M) p7: qsort#(add(N,X)) -> f_3#(split(N,X),N,X) p8: qsort#(add(N,X)) -> split#(N,X) p9: f_3#(pair(Y,Z),N,X) -> append#(qsort(Y),add(X,qsort(Z))) p10: f_3#(pair(Y,Z),N,X) -> qsort#(Y) p11: f_3#(pair(Y,Z),N,X) -> qsort#(Z) and R consists of: r1: lt(|0|(),s(X)) -> true() r2: lt(s(X),|0|()) -> false() r3: lt(s(X),s(Y)) -> lt(X,Y) r4: append(nil(),Y) -> Y r5: append(add(N,X),Y) -> add(N,append(X,Y)) r6: split(N,nil()) -> pair(nil(),nil()) r7: split(N,add(M,Y)) -> f_1(split(N,Y),N,M,Y) r8: f_1(pair(X,Z),N,M,Y) -> f_2(lt(N,M),N,M,Y,X,Z) r9: f_2(true(),N,M,Y,X,Z) -> pair(X,add(M,Z)) r10: f_2(false(),N,M,Y,X,Z) -> pair(add(M,X),Z) r11: qsort(nil()) -> nil() r12: qsort(add(N,X)) -> f_3(split(N,X),N,X) r13: f_3(pair(Y,Z),N,X) -> append(qsort(Y),add(X,qsort(Z))) The estimated dependency graph contains the following SCCs: {p7, p10, p11} {p4} {p1} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f_3#(pair(Y,Z),N,X) -> qsort#(Z) p2: qsort#(add(N,X)) -> f_3#(split(N,X),N,X) p3: f_3#(pair(Y,Z),N,X) -> qsort#(Y) and R consists of: r1: lt(|0|(),s(X)) -> true() r2: lt(s(X),|0|()) -> false() r3: lt(s(X),s(Y)) -> lt(X,Y) r4: append(nil(),Y) -> Y r5: append(add(N,X),Y) -> add(N,append(X,Y)) r6: split(N,nil()) -> pair(nil(),nil()) r7: split(N,add(M,Y)) -> f_1(split(N,Y),N,M,Y) r8: f_1(pair(X,Z),N,M,Y) -> f_2(lt(N,M),N,M,Y,X,Z) r9: f_2(true(),N,M,Y,X,Z) -> pair(X,add(M,Z)) r10: f_2(false(),N,M,Y,X,Z) -> pair(add(M,X),Z) r11: qsort(nil()) -> nil() r12: qsort(add(N,X)) -> f_3(split(N,X),N,X) r13: f_3(pair(Y,Z),N,X) -> append(qsort(Y),add(X,qsort(Z))) The set of usable rules consists of r1, r2, r3, r6, r7, r8, r9, r10 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: f_3#_A(x1,x2,x3) = x1 + (1,6) pair_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + (2,2) qsort#_A(x1) = x1 + (1,1) add_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (6,10) split_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (4,3) lt_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (11,11) |0|_A() = (10,4) s_A(x1) = ((1,0),(0,0)) x1 + (10,0) true_A() = (1,1) false_A() = (9,3) f_2_A(x1,x2,x3,x4,x5,x6) = ((1,0),(1,0)) x3 + ((1,0),(0,0)) x5 + ((1,0),(1,0)) x6 + (8,9) f_1_A(x1,x2,x3,x4) = x1 + ((1,0),(1,1)) x3 + (6,8) nil_A() = (1,4) precedence: lt = |0| = true > split = f_1 > add = s = false > f_3# = qsort# = f_2 > pair > nil partial status: pi(f_3#) = [1] pi(pair) = [] pi(qsort#) = [1] pi(add) = [] pi(split) = [] pi(lt) = [] pi(|0|) = [] pi(s) = [] pi(true) = [] pi(false) = [] pi(f_2) = [] pi(f_1) = [] pi(nil) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f_3#(pair(Y,Z),N,X) -> qsort#(Z) p2: f_3#(pair(Y,Z),N,X) -> qsort#(Y) and R consists of: r1: lt(|0|(),s(X)) -> true() r2: lt(s(X),|0|()) -> false() r3: lt(s(X),s(Y)) -> lt(X,Y) r4: append(nil(),Y) -> Y r5: append(add(N,X),Y) -> add(N,append(X,Y)) r6: split(N,nil()) -> pair(nil(),nil()) r7: split(N,add(M,Y)) -> f_1(split(N,Y),N,M,Y) r8: f_1(pair(X,Z),N,M,Y) -> f_2(lt(N,M),N,M,Y,X,Z) r9: f_2(true(),N,M,Y,X,Z) -> pair(X,add(M,Z)) r10: f_2(false(),N,M,Y,X,Z) -> pair(add(M,X),Z) r11: qsort(nil()) -> nil() r12: qsort(add(N,X)) -> f_3(split(N,X),N,X) r13: f_3(pair(Y,Z),N,X) -> append(qsort(Y),add(X,qsort(Z))) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: split#(N,add(M,Y)) -> split#(N,Y) and R consists of: r1: lt(|0|(),s(X)) -> true() r2: lt(s(X),|0|()) -> false() r3: lt(s(X),s(Y)) -> lt(X,Y) r4: append(nil(),Y) -> Y r5: append(add(N,X),Y) -> add(N,append(X,Y)) r6: split(N,nil()) -> pair(nil(),nil()) r7: split(N,add(M,Y)) -> f_1(split(N,Y),N,M,Y) r8: f_1(pair(X,Z),N,M,Y) -> f_2(lt(N,M),N,M,Y,X,Z) r9: f_2(true(),N,M,Y,X,Z) -> pair(X,add(M,Z)) r10: f_2(false(),N,M,Y,X,Z) -> pair(add(M,X),Z) r11: qsort(nil()) -> nil() r12: qsort(add(N,X)) -> f_3(split(N,X),N,X) r13: f_3(pair(Y,Z),N,X) -> append(qsort(Y),add(X,qsort(Z))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: split#_A(x1,x2) = ((1,0),(1,0)) x2 + (1,0) add_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + (1,0) precedence: add > split# partial status: pi(split#) = [] pi(add) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: lt#(s(X),s(Y)) -> lt#(X,Y) and R consists of: r1: lt(|0|(),s(X)) -> true() r2: lt(s(X),|0|()) -> false() r3: lt(s(X),s(Y)) -> lt(X,Y) r4: append(nil(),Y) -> Y r5: append(add(N,X),Y) -> add(N,append(X,Y)) r6: split(N,nil()) -> pair(nil(),nil()) r7: split(N,add(M,Y)) -> f_1(split(N,Y),N,M,Y) r8: f_1(pair(X,Z),N,M,Y) -> f_2(lt(N,M),N,M,Y,X,Z) r9: f_2(true(),N,M,Y,X,Z) -> pair(X,add(M,Z)) r10: f_2(false(),N,M,Y,X,Z) -> pair(add(M,X),Z) r11: qsort(nil()) -> nil() r12: qsort(add(N,X)) -> f_3(split(N,X),N,X) r13: f_3(pair(Y,Z),N,X) -> append(qsort(Y),add(X,qsort(Z))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: lt#_A(x1,x2) = x1 s_A(x1) = x1 + (1,1) precedence: s > lt# partial status: pi(lt#) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: append#(add(N,X),Y) -> append#(X,Y) and R consists of: r1: lt(|0|(),s(X)) -> true() r2: lt(s(X),|0|()) -> false() r3: lt(s(X),s(Y)) -> lt(X,Y) r4: append(nil(),Y) -> Y r5: append(add(N,X),Y) -> add(N,append(X,Y)) r6: split(N,nil()) -> pair(nil(),nil()) r7: split(N,add(M,Y)) -> f_1(split(N,Y),N,M,Y) r8: f_1(pair(X,Z),N,M,Y) -> f_2(lt(N,M),N,M,Y,X,Z) r9: f_2(true(),N,M,Y,X,Z) -> pair(X,add(M,Z)) r10: f_2(false(),N,M,Y,X,Z) -> pair(add(M,X),Z) r11: qsort(nil()) -> nil() r12: qsort(add(N,X)) -> f_3(split(N,X),N,X) r13: f_3(pair(Y,Z),N,X) -> append(qsort(Y),add(X,qsort(Z))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: append#_A(x1,x2) = ((1,0),(0,0)) x1 + (1,1) add_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(0,0)) x2 + (2,2) precedence: append# = add partial status: pi(append#) = [] pi(add) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.