YES We show the termination of the TRS R: active(and(true(),X)) -> mark(X) active(and(false(),Y)) -> mark(false()) active(if(true(),X,Y)) -> mark(X) active(if(false(),X,Y)) -> mark(Y) active(add(|0|(),X)) -> mark(X) active(add(s(X),Y)) -> mark(s(add(X,Y))) active(first(|0|(),X)) -> mark(nil()) active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) active(from(X)) -> mark(cons(X,from(s(X)))) mark(and(X1,X2)) -> active(and(mark(X1),X2)) mark(true()) -> active(true()) mark(false()) -> active(false()) mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) mark(add(X1,X2)) -> active(add(mark(X1),X2)) mark(|0|()) -> active(|0|()) mark(s(X)) -> active(s(X)) mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) mark(nil()) -> active(nil()) mark(cons(X1,X2)) -> active(cons(X1,X2)) mark(from(X)) -> active(from(X)) and(mark(X1),X2) -> and(X1,X2) and(X1,mark(X2)) -> and(X1,X2) and(active(X1),X2) -> and(X1,X2) and(X1,active(X2)) -> and(X1,X2) if(mark(X1),X2,X3) -> if(X1,X2,X3) if(X1,mark(X2),X3) -> if(X1,X2,X3) if(X1,X2,mark(X3)) -> if(X1,X2,X3) if(active(X1),X2,X3) -> if(X1,X2,X3) if(X1,active(X2),X3) -> if(X1,X2,X3) if(X1,X2,active(X3)) -> if(X1,X2,X3) add(mark(X1),X2) -> add(X1,X2) add(X1,mark(X2)) -> add(X1,X2) add(active(X1),X2) -> add(X1,X2) add(X1,active(X2)) -> add(X1,X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) first(mark(X1),X2) -> first(X1,X2) first(X1,mark(X2)) -> first(X1,X2) first(active(X1),X2) -> first(X1,X2) first(X1,active(X2)) -> first(X1,X2) cons(mark(X1),X2) -> cons(X1,X2) cons(X1,mark(X2)) -> cons(X1,X2) cons(active(X1),X2) -> cons(X1,X2) cons(X1,active(X2)) -> cons(X1,X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: active#(and(false(),Y)) -> mark#(false()) p3: active#(if(true(),X,Y)) -> mark#(X) p4: active#(if(false(),X,Y)) -> mark#(Y) p5: active#(add(|0|(),X)) -> mark#(X) p6: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p7: active#(add(s(X),Y)) -> s#(add(X,Y)) p8: active#(add(s(X),Y)) -> add#(X,Y) p9: active#(first(|0|(),X)) -> mark#(nil()) p10: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p11: active#(first(s(X),cons(Y,Z))) -> cons#(Y,first(X,Z)) p12: active#(first(s(X),cons(Y,Z))) -> first#(X,Z) p13: active#(from(X)) -> mark#(cons(X,from(s(X)))) p14: active#(from(X)) -> cons#(X,from(s(X))) p15: active#(from(X)) -> from#(s(X)) p16: active#(from(X)) -> s#(X) p17: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p18: mark#(and(X1,X2)) -> and#(mark(X1),X2) p19: mark#(and(X1,X2)) -> mark#(X1) p20: mark#(true()) -> active#(true()) p21: mark#(false()) -> active#(false()) p22: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p23: mark#(if(X1,X2,X3)) -> if#(mark(X1),X2,X3) p24: mark#(if(X1,X2,X3)) -> mark#(X1) p25: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p26: mark#(add(X1,X2)) -> add#(mark(X1),X2) p27: mark#(add(X1,X2)) -> mark#(X1) p28: mark#(|0|()) -> active#(|0|()) p29: mark#(s(X)) -> active#(s(X)) p30: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p31: mark#(first(X1,X2)) -> first#(mark(X1),mark(X2)) p32: mark#(first(X1,X2)) -> mark#(X1) p33: mark#(first(X1,X2)) -> mark#(X2) p34: mark#(nil()) -> active#(nil()) p35: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p36: mark#(from(X)) -> active#(from(X)) p37: and#(mark(X1),X2) -> and#(X1,X2) p38: and#(X1,mark(X2)) -> and#(X1,X2) p39: and#(active(X1),X2) -> and#(X1,X2) p40: and#(X1,active(X2)) -> and#(X1,X2) p41: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p42: if#(X1,mark(X2),X3) -> if#(X1,X2,X3) p43: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) p44: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p45: if#(X1,active(X2),X3) -> if#(X1,X2,X3) p46: if#(X1,X2,active(X3)) -> if#(X1,X2,X3) p47: add#(mark(X1),X2) -> add#(X1,X2) p48: add#(X1,mark(X2)) -> add#(X1,X2) p49: add#(active(X1),X2) -> add#(X1,X2) p50: add#(X1,active(X2)) -> add#(X1,X2) p51: s#(mark(X)) -> s#(X) p52: s#(active(X)) -> s#(X) p53: first#(mark(X1),X2) -> first#(X1,X2) p54: first#(X1,mark(X2)) -> first#(X1,X2) p55: first#(active(X1),X2) -> first#(X1,X2) p56: first#(X1,active(X2)) -> first#(X1,X2) p57: cons#(mark(X1),X2) -> cons#(X1,X2) p58: cons#(X1,mark(X2)) -> cons#(X1,X2) p59: cons#(active(X1),X2) -> cons#(X1,X2) p60: cons#(X1,active(X2)) -> cons#(X1,X2) p61: from#(mark(X)) -> from#(X) p62: from#(active(X)) -> from#(X) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p3, p4, p5, p6, p10, p13, p17, p19, p22, p24, p25, p27, p29, p30, p32, p33, p35, p36} {p51, p52} {p47, p48, p49, p50} {p57, p58, p59, p60} {p53, p54, p55, p56} {p61, p62} {p37, p38, p39, p40} {p41, p42, p43, p44, p45, p46} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: mark#(from(X)) -> active#(from(X)) p3: active#(from(X)) -> mark#(cons(X,from(s(X)))) p4: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p5: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p6: mark#(first(X1,X2)) -> mark#(X2) p7: mark#(first(X1,X2)) -> mark#(X1) p8: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p9: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p10: mark#(s(X)) -> active#(s(X)) p11: active#(add(|0|(),X)) -> mark#(X) p12: mark#(add(X1,X2)) -> mark#(X1) p13: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p14: active#(if(false(),X,Y)) -> mark#(Y) p15: mark#(if(X1,X2,X3)) -> mark#(X1) p16: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p17: active#(if(true(),X,Y)) -> mark#(X) p18: mark#(and(X1,X2)) -> mark#(X1) p19: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: active#_A(x1) = ((1,0),(1,0)) x1 + (2,5) and_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (4,3) true_A() = (1,2) mark#_A(x1) = ((1,0),(1,0)) x1 + (3,4) from_A(x1) = ((1,0),(0,0)) x1 + (6,4) cons_A(x1,x2) = (1,3) s_A(x1) = (5,16) first_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (13,17) mark_A(x1) = x1 add_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (6,16) |0|_A() = (2,3) if_A(x1,x2,x3) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + ((1,0),(1,0)) x3 + (1,7) false_A() = (2,2) active_A(x1) = ((1,0),(0,0)) x1 + (0,1) nil_A() = (1,2) precedence: mark# = cons = s = first = mark = add = if = false = active > and > active# > true > from > |0| > nil partial status: pi(active#) = [] pi(and) = [] pi(true) = [] pi(mark#) = [] pi(from) = [] pi(cons) = [] pi(s) = [] pi(first) = [] pi(mark) = [] pi(add) = [] pi(|0|) = [] pi(if) = [] pi(false) = [] pi(active) = [] pi(nil) = [] The next rules are strictly ordered: p17 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: mark#(from(X)) -> active#(from(X)) p3: active#(from(X)) -> mark#(cons(X,from(s(X)))) p4: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p5: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p6: mark#(first(X1,X2)) -> mark#(X2) p7: mark#(first(X1,X2)) -> mark#(X1) p8: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p9: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p10: mark#(s(X)) -> active#(s(X)) p11: active#(add(|0|(),X)) -> mark#(X) p12: mark#(add(X1,X2)) -> mark#(X1) p13: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p14: active#(if(false(),X,Y)) -> mark#(Y) p15: mark#(if(X1,X2,X3)) -> mark#(X1) p16: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p17: mark#(and(X1,X2)) -> mark#(X1) p18: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p3: active#(if(false(),X,Y)) -> mark#(Y) p4: mark#(and(X1,X2)) -> mark#(X1) p5: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p6: active#(add(|0|(),X)) -> mark#(X) p7: mark#(if(X1,X2,X3)) -> mark#(X1) p8: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p9: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p10: mark#(add(X1,X2)) -> mark#(X1) p11: mark#(s(X)) -> active#(s(X)) p12: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p13: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p14: active#(from(X)) -> mark#(cons(X,from(s(X)))) p15: mark#(first(X1,X2)) -> mark#(X1) p16: mark#(first(X1,X2)) -> mark#(X2) p17: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p18: mark#(from(X)) -> active#(from(X)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: active#_A(x1) = ((0,0),(1,0)) x1 + (18,5) and_A(x1,x2) = ((1,0),(1,0)) x1 + x2 + (19,11) true_A() = (19,13) mark#_A(x1) = ((0,0),(1,0)) x1 + (18,12) mark_A(x1) = ((1,0),(1,1)) x1 + (0,3) if_A(x1,x2,x3) = ((1,0),(0,0)) x1 + x2 + x3 + (17,4) false_A() = (2,7) add_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (19,17) |0|_A() = (19,25) s_A(x1) = (17,16) first_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (0,4) cons_A(x1,x2) = (4,25) from_A(x1) = ((1,0),(0,0)) x1 + (19,30) active_A(x1) = x1 + (0,2) nil_A() = (0,21) precedence: active# = and = mark# = mark = if = false = first = cons = from > active > true = add = |0| = s = nil partial status: pi(active#) = [] pi(and) = [] pi(true) = [] pi(mark#) = [] pi(mark) = [] pi(if) = [] pi(false) = [] pi(add) = [] pi(|0|) = [] pi(s) = [] pi(first) = [] pi(cons) = [] pi(from) = [] pi(active) = [1] pi(nil) = [] The next rules are strictly ordered: p14 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p3: active#(if(false(),X,Y)) -> mark#(Y) p4: mark#(and(X1,X2)) -> mark#(X1) p5: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p6: active#(add(|0|(),X)) -> mark#(X) p7: mark#(if(X1,X2,X3)) -> mark#(X1) p8: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p9: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p10: mark#(add(X1,X2)) -> mark#(X1) p11: mark#(s(X)) -> active#(s(X)) p12: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p13: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p14: mark#(first(X1,X2)) -> mark#(X1) p15: mark#(first(X1,X2)) -> mark#(X2) p16: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p17: mark#(from(X)) -> active#(from(X)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: mark#(from(X)) -> active#(from(X)) p3: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p4: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p5: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p6: mark#(first(X1,X2)) -> mark#(X2) p7: mark#(first(X1,X2)) -> mark#(X1) p8: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p9: active#(add(|0|(),X)) -> mark#(X) p10: mark#(s(X)) -> active#(s(X)) p11: active#(if(false(),X,Y)) -> mark#(Y) p12: mark#(add(X1,X2)) -> mark#(X1) p13: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p14: mark#(if(X1,X2,X3)) -> mark#(X1) p15: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p16: mark#(and(X1,X2)) -> mark#(X1) p17: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: active#_A(x1) = ((1,0),(1,0)) x1 and_A(x1,x2) = x1 + x2 + (14,13) true_A() = (2,3) mark#_A(x1) = x1 + (1,2) from_A(x1) = ((0,0),(1,0)) x1 + (6,21) first_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (6,7) s_A(x1) = (5,22) cons_A(x1,x2) = (1,9) add_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (20,20) mark_A(x1) = ((1,0),(1,1)) x1 + (0,10) |0|_A() = (6,13) if_A(x1,x2,x3) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + ((1,0),(1,1)) x3 + (9,11) false_A() = (2,11) active_A(x1) = x1 + (0,8) nil_A() = (1,1) precedence: and = true = if > active# = mark# = first = add > s = mark = |0| = false = active = nil > cons > from partial status: pi(active#) = [] pi(and) = [] pi(true) = [] pi(mark#) = [1] pi(from) = [] pi(first) = [] pi(s) = [] pi(cons) = [] pi(add) = [1] pi(mark) = [] pi(|0|) = [] pi(if) = [] pi(false) = [] pi(active) = [] pi(nil) = [] The next rules are strictly ordered: p9 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: mark#(from(X)) -> active#(from(X)) p3: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p4: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p5: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p6: mark#(first(X1,X2)) -> mark#(X2) p7: mark#(first(X1,X2)) -> mark#(X1) p8: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p9: mark#(s(X)) -> active#(s(X)) p10: active#(if(false(),X,Y)) -> mark#(Y) p11: mark#(add(X1,X2)) -> mark#(X1) p12: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p13: mark#(if(X1,X2,X3)) -> mark#(X1) p14: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p15: mark#(and(X1,X2)) -> mark#(X1) p16: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p3: active#(if(false(),X,Y)) -> mark#(Y) p4: mark#(and(X1,X2)) -> mark#(X1) p5: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p6: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p7: mark#(if(X1,X2,X3)) -> mark#(X1) p8: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p9: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p10: mark#(add(X1,X2)) -> mark#(X1) p11: mark#(s(X)) -> active#(s(X)) p12: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p13: mark#(first(X1,X2)) -> mark#(X1) p14: mark#(first(X1,X2)) -> mark#(X2) p15: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p16: mark#(from(X)) -> active#(from(X)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: active#_A(x1) = x1 + (25,7) and_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,1)) x2 + (27,1) true_A() = (1,4) mark#_A(x1) = ((1,0),(1,1)) x1 + (26,5) mark_A(x1) = ((1,0),(1,1)) x1 + (0,22) if_A(x1,x2,x3) = x1 + ((1,0),(1,1)) x2 + ((1,0),(1,1)) x3 + (25,10) false_A() = (2,2) add_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (27,2) s_A(x1) = (3,23) first_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (32,24) cons_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (1,23) from_A(x1) = (4,51) active_A(x1) = x1 + (0,9) |0|_A() = (0,2) nil_A() = (0,1) precedence: and > true = mark# = mark = if = false = add = cons = from = active > active# = first = |0| = nil > s partial status: pi(active#) = [1] pi(and) = [] pi(true) = [] pi(mark#) = [] pi(mark) = [] pi(if) = [2, 3] pi(false) = [] pi(add) = [1] pi(s) = [] pi(first) = [] pi(cons) = [] pi(from) = [] pi(active) = [] pi(|0|) = [] pi(nil) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p3: active#(if(false(),X,Y)) -> mark#(Y) p4: mark#(and(X1,X2)) -> mark#(X1) p5: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p6: mark#(if(X1,X2,X3)) -> mark#(X1) p7: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p8: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p9: mark#(add(X1,X2)) -> mark#(X1) p10: mark#(s(X)) -> active#(s(X)) p11: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p12: mark#(first(X1,X2)) -> mark#(X1) p13: mark#(first(X1,X2)) -> mark#(X2) p14: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p15: mark#(from(X)) -> active#(from(X)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: mark#(from(X)) -> active#(from(X)) p3: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p4: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p5: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p6: mark#(first(X1,X2)) -> mark#(X2) p7: mark#(first(X1,X2)) -> mark#(X1) p8: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p9: active#(if(false(),X,Y)) -> mark#(Y) p10: mark#(s(X)) -> active#(s(X)) p11: mark#(add(X1,X2)) -> mark#(X1) p12: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p13: mark#(if(X1,X2,X3)) -> mark#(X1) p14: mark#(and(X1,X2)) -> mark#(X1) p15: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: active#_A(x1) = ((1,0),(0,0)) x1 + (0,10) and_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (14,0) true_A() = (2,1) mark#_A(x1) = ((1,0),(1,0)) x1 + (13,3) from_A(x1) = (8,3) first_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (12,11) s_A(x1) = (6,4) cons_A(x1,x2) = (2,1) add_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (16,5) mark_A(x1) = ((1,0),(1,0)) x1 + (0,18) if_A(x1,x2,x3) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (14,1) false_A() = (0,0) active_A(x1) = x1 + (0,18) |0|_A() = (2,0) nil_A() = (1,1) precedence: from = s > active# = and = mark# = first = if = false = |0| > mark = active > true = cons = add = nil partial status: pi(active#) = [] pi(and) = [] pi(true) = [] pi(mark#) = [] pi(from) = [] pi(first) = [] pi(s) = [] pi(cons) = [] pi(add) = [] pi(mark) = [] pi(if) = [] pi(false) = [] pi(active) = [] pi(|0|) = [] pi(nil) = [] The next rules are strictly ordered: p12 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: mark#(from(X)) -> active#(from(X)) p3: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p4: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p5: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p6: mark#(first(X1,X2)) -> mark#(X2) p7: mark#(first(X1,X2)) -> mark#(X1) p8: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p9: active#(if(false(),X,Y)) -> mark#(Y) p10: mark#(s(X)) -> active#(s(X)) p11: mark#(add(X1,X2)) -> mark#(X1) p12: mark#(if(X1,X2,X3)) -> mark#(X1) p13: mark#(and(X1,X2)) -> mark#(X1) p14: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p3: active#(if(false(),X,Y)) -> mark#(Y) p4: mark#(and(X1,X2)) -> mark#(X1) p5: mark#(if(X1,X2,X3)) -> mark#(X1) p6: mark#(add(X1,X2)) -> mark#(X1) p7: mark#(s(X)) -> active#(s(X)) p8: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p9: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p10: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p11: mark#(first(X1,X2)) -> mark#(X1) p12: mark#(first(X1,X2)) -> mark#(X2) p13: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p14: mark#(from(X)) -> active#(from(X)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: active#_A(x1) = ((0,0),(1,0)) x1 + (3,1) and_A(x1,x2) = (6,1) true_A() = (2,0) mark#_A(x1) = (3,7) mark_A(x1) = (1,0) if_A(x1,x2,x3) = (7,1) false_A() = (2,0) add_A(x1,x2) = (8,0) s_A(x1) = (5,8) first_A(x1,x2) = (6,6) cons_A(x1,x2) = (2,9) from_A(x1) = (4,0) active_A(x1) = (1,0) |0|_A() = (2,0) nil_A() = (1,0) precedence: active# = and = true = mark# = false = add = s > mark = if = first = from = active = |0| = nil > cons partial status: pi(active#) = [] pi(and) = [] pi(true) = [] pi(mark#) = [] pi(mark) = [] pi(if) = [] pi(false) = [] pi(add) = [] pi(s) = [] pi(first) = [] pi(cons) = [] pi(from) = [] pi(active) = [] pi(|0|) = [] pi(nil) = [] The next rules are strictly ordered: p13 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p3: active#(if(false(),X,Y)) -> mark#(Y) p4: mark#(and(X1,X2)) -> mark#(X1) p5: mark#(if(X1,X2,X3)) -> mark#(X1) p6: mark#(add(X1,X2)) -> mark#(X1) p7: mark#(s(X)) -> active#(s(X)) p8: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p9: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p10: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p11: mark#(first(X1,X2)) -> mark#(X1) p12: mark#(first(X1,X2)) -> mark#(X2) p13: mark#(from(X)) -> active#(from(X)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: mark#(from(X)) -> active#(from(X)) p3: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p4: mark#(first(X1,X2)) -> mark#(X2) p5: mark#(first(X1,X2)) -> mark#(X1) p6: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p7: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p8: mark#(s(X)) -> active#(s(X)) p9: active#(if(false(),X,Y)) -> mark#(Y) p10: mark#(add(X1,X2)) -> mark#(X1) p11: mark#(if(X1,X2,X3)) -> mark#(X1) p12: mark#(and(X1,X2)) -> mark#(X1) p13: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: active#_A(x1) = ((1,0),(1,0)) x1 + (0,1) and_A(x1,x2) = (6,2) true_A() = (7,0) mark#_A(x1) = (6,7) from_A(x1) = (4,4) first_A(x1,x2) = (6,8) s_A(x1) = (1,3) cons_A(x1,x2) = (7,5) mark_A(x1) = (5,1) add_A(x1,x2) = (7,9) if_A(x1,x2,x3) = (7,0) false_A() = (4,0) active_A(x1) = (5,1) |0|_A() = (4,0) nil_A() = (1,0) precedence: true = s = cons > active# = mark# = from = first = add = false = |0| = nil > and = mark = if = active partial status: pi(active#) = [] pi(and) = [] pi(true) = [] pi(mark#) = [] pi(from) = [] pi(first) = [] pi(s) = [] pi(cons) = [] pi(mark) = [] pi(add) = [] pi(if) = [] pi(false) = [] pi(active) = [] pi(|0|) = [] pi(nil) = [] The next rules are strictly ordered: p9 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: mark#(from(X)) -> active#(from(X)) p3: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p4: mark#(first(X1,X2)) -> mark#(X2) p5: mark#(first(X1,X2)) -> mark#(X1) p6: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p7: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p8: mark#(s(X)) -> active#(s(X)) p9: mark#(add(X1,X2)) -> mark#(X1) p10: mark#(if(X1,X2,X3)) -> mark#(X1) p11: mark#(and(X1,X2)) -> mark#(X1) p12: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p3: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p4: mark#(and(X1,X2)) -> mark#(X1) p5: mark#(if(X1,X2,X3)) -> mark#(X1) p6: mark#(add(X1,X2)) -> mark#(X1) p7: mark#(s(X)) -> active#(s(X)) p8: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p9: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p10: mark#(first(X1,X2)) -> mark#(X1) p11: mark#(first(X1,X2)) -> mark#(X2) p12: mark#(from(X)) -> active#(from(X)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: active#_A(x1) = ((1,0),(1,0)) x1 + (1,1) and_A(x1,x2) = (4,9) true_A() = (4,8) mark#_A(x1) = (5,5) mark_A(x1) = (7,7) add_A(x1,x2) = (6,8) s_A(x1) = (1,1) if_A(x1,x2,x3) = (6,6) first_A(x1,x2) = (4,2) cons_A(x1,x2) = (2,3) from_A(x1) = (3,0) active_A(x1) = (7,7) false_A() = (8,8) |0|_A() = (6,9) nil_A() = (5,8) precedence: active# = true = mark# = s = first = from = false = |0| > and = mark = if = active > add = cons > nil partial status: pi(active#) = [] pi(and) = [] pi(true) = [] pi(mark#) = [] pi(mark) = [] pi(add) = [] pi(s) = [] pi(if) = [] pi(first) = [] pi(cons) = [] pi(from) = [] pi(active) = [] pi(false) = [] pi(|0|) = [] pi(nil) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p3: mark#(and(X1,X2)) -> mark#(X1) p4: mark#(if(X1,X2,X3)) -> mark#(X1) p5: mark#(add(X1,X2)) -> mark#(X1) p6: mark#(s(X)) -> active#(s(X)) p7: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p8: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p9: mark#(first(X1,X2)) -> mark#(X1) p10: mark#(first(X1,X2)) -> mark#(X2) p11: mark#(from(X)) -> active#(from(X)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: mark#(from(X)) -> active#(from(X)) p3: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p4: mark#(first(X1,X2)) -> mark#(X2) p5: mark#(first(X1,X2)) -> mark#(X1) p6: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p7: mark#(s(X)) -> active#(s(X)) p8: mark#(add(X1,X2)) -> mark#(X1) p9: mark#(if(X1,X2,X3)) -> mark#(X1) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: active#_A(x1) = ((1,0),(0,0)) x1 + (0,6) and_A(x1,x2) = x1 + ((1,0),(1,0)) x2 + (6,7) true_A() = (0,2) mark#_A(x1) = ((1,0),(1,1)) x1 + (1,3) from_A(x1) = x1 + (4,6) first_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,1)) x2 + (4,9) s_A(x1) = (3,6) cons_A(x1,x2) = (1,1) mark_A(x1) = x1 + (0,8) add_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (4,12) if_A(x1,x2,x3) = x1 + ((1,0),(1,1)) x2 + ((1,0),(1,1)) x3 + (2,7) active_A(x1) = x1 false_A() = (1,2) |0|_A() = (2,19) nil_A() = (1,10) precedence: and = first = add = if = nil > |0| > active# = true = mark# = from = s = cons = mark = active = false partial status: pi(active#) = [] pi(and) = [] pi(true) = [] pi(mark#) = [1] pi(from) = [] pi(first) = [] pi(s) = [] pi(cons) = [] pi(mark) = [] pi(add) = [] pi(if) = [] pi(active) = [] pi(false) = [] pi(|0|) = [] pi(nil) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: mark#(from(X)) -> active#(from(X)) p3: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p4: mark#(first(X1,X2)) -> mark#(X2) p5: mark#(first(X1,X2)) -> mark#(X1) p6: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p7: mark#(add(X1,X2)) -> mark#(X1) p8: mark#(if(X1,X2,X3)) -> mark#(X1) p9: mark#(and(X1,X2)) -> mark#(X1) p10: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p3: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p4: mark#(and(X1,X2)) -> mark#(X1) p5: mark#(if(X1,X2,X3)) -> mark#(X1) p6: mark#(add(X1,X2)) -> mark#(X1) p7: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p8: mark#(first(X1,X2)) -> mark#(X1) p9: mark#(first(X1,X2)) -> mark#(X2) p10: mark#(from(X)) -> active#(from(X)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: active#_A(x1) = ((1,0),(0,0)) x1 + (1,4) and_A(x1,x2) = (4,1) true_A() = (6,0) mark#_A(x1) = (5,4) mark_A(x1) = (3,2) first_A(x1,x2) = (4,4) s_A(x1) = (6,1) cons_A(x1,x2) = (1,0) if_A(x1,x2,x3) = (6,0) add_A(x1,x2) = (7,3) from_A(x1) = (2,0) active_A(x1) = (3,2) false_A() = (1,0) |0|_A() = (4,0) nil_A() = (1,0) precedence: true = s > and = add > active# = mark# = mark = first = cons = if = from = active = false = |0| = nil partial status: pi(active#) = [] pi(and) = [] pi(true) = [] pi(mark#) = [] pi(mark) = [] pi(first) = [] pi(s) = [] pi(cons) = [] pi(if) = [] pi(add) = [] pi(from) = [] pi(active) = [] pi(false) = [] pi(|0|) = [] pi(nil) = [] The next rules are strictly ordered: p10 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p3: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p4: mark#(and(X1,X2)) -> mark#(X1) p5: mark#(if(X1,X2,X3)) -> mark#(X1) p6: mark#(add(X1,X2)) -> mark#(X1) p7: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p8: mark#(first(X1,X2)) -> mark#(X1) p9: mark#(first(X1,X2)) -> mark#(X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: mark#(first(X1,X2)) -> mark#(X2) p3: mark#(first(X1,X2)) -> mark#(X1) p4: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p5: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p6: mark#(add(X1,X2)) -> mark#(X1) p7: mark#(if(X1,X2,X3)) -> mark#(X1) p8: mark#(and(X1,X2)) -> mark#(X1) p9: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: active#_A(x1) = ((1,0),(1,1)) x1 + (0,1) and_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (1,1) true_A() = (1,3) mark#_A(x1) = ((1,0),(1,1)) x1 + (0,2) first_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 mark_A(x1) = x1 s_A(x1) = ((0,0),(1,0)) x1 + (0,3) cons_A(x1,x2) = ((1,0),(1,0)) x1 + (0,4) add_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (2,1) if_A(x1,x2,x3) = x1 + ((1,0),(1,1)) x2 + ((1,0),(1,1)) x3 + (1,1) active_A(x1) = x1 false_A() = (1,2) |0|_A() = (2,1) nil_A() = (1,3) from_A(x1) = ((1,0),(1,1)) x1 + (0,4) precedence: true > |0| > from > s = cons > active# > and = mark# > first = mark = nil > active > false > add = if partial status: pi(active#) = [1] pi(and) = [] pi(true) = [] pi(mark#) = [] pi(first) = [1, 2] pi(mark) = [1] pi(s) = [] pi(cons) = [] pi(add) = [] pi(if) = [] pi(active) = [1] pi(false) = [] pi(|0|) = [] pi(nil) = [] pi(from) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(first(X1,X2)) -> mark#(X2) p2: mark#(first(X1,X2)) -> mark#(X1) p3: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p4: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p5: mark#(add(X1,X2)) -> mark#(X1) p6: mark#(if(X1,X2,X3)) -> mark#(X1) p7: mark#(and(X1,X2)) -> mark#(X1) p8: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(first(X1,X2)) -> mark#(X2) p2: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p3: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p4: mark#(and(X1,X2)) -> mark#(X1) p5: mark#(if(X1,X2,X3)) -> mark#(X1) p6: mark#(add(X1,X2)) -> mark#(X1) p7: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p8: mark#(first(X1,X2)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = ((1,0),(0,0)) x1 + (2,13) first_A(x1,x2) = x1 + x2 + (27,14) and_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (26,15) active#_A(x1) = (27,1) mark_A(x1) = ((1,0),(1,1)) x1 + (0,15) s_A(x1) = ((0,0),(1,0)) x1 + (4,12) cons_A(x1,x2) = ((0,0),(1,0)) x2 + (1,3) if_A(x1,x2,x3) = ((1,0),(0,0)) x1 + ((1,0),(1,1)) x2 + ((1,0),(1,1)) x3 + (3,16) add_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (5,19) active_A(x1) = x1 + (0,2) true_A() = (1,1) false_A() = (1,1) |0|_A() = (2,1) nil_A() = (1,16) from_A(x1) = (5,9) precedence: if > and > mark# = first = mark = s = add = active > active# > cons = true = false = |0| = nil = from partial status: pi(mark#) = [] pi(first) = [1, 2] pi(and) = [] pi(active#) = [] pi(mark) = [] pi(s) = [] pi(cons) = [] pi(if) = [] pi(add) = [1, 2] pi(active) = [] pi(true) = [] pi(false) = [] pi(|0|) = [] pi(nil) = [] pi(from) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(first(X1,X2)) -> mark#(X2) p2: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p3: mark#(and(X1,X2)) -> mark#(X1) p4: mark#(if(X1,X2,X3)) -> mark#(X1) p5: mark#(add(X1,X2)) -> mark#(X1) p6: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p7: mark#(first(X1,X2)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(first(X1,X2)) -> mark#(X2) p2: mark#(first(X1,X2)) -> mark#(X1) p3: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p4: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p5: mark#(add(X1,X2)) -> mark#(X1) p6: mark#(if(X1,X2,X3)) -> mark#(X1) p7: mark#(and(X1,X2)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = ((1,0),(1,0)) x1 + (0,2) first_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (35,6) active#_A(x1) = (34,4) mark_A(x1) = ((1,0),(1,1)) x1 + (0,15) s_A(x1) = (2,7) cons_A(x1,x2) = ((0,0),(1,0)) x1 + (1,5) add_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,1)) x2 + (3,25) if_A(x1,x2,x3) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 + ((1,0),(1,1)) x3 + (2,1) and_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + (2,17) active_A(x1) = x1 + (0,16) true_A() = (15,1) false_A() = (15,4) |0|_A() = (3,19) nil_A() = (2,1) from_A(x1) = ((0,0),(1,0)) x1 + (3,0) precedence: mark# = active# = mark = s = cons = if = and = active = |0| > first > true = false = from > add > nil partial status: pi(mark#) = [] pi(first) = [1, 2] pi(active#) = [] pi(mark) = [] pi(s) = [] pi(cons) = [] pi(add) = [] pi(if) = [] pi(and) = [] pi(active) = [] pi(true) = [] pi(false) = [] pi(|0|) = [] pi(nil) = [] pi(from) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(first(X1,X2)) -> mark#(X2) p2: mark#(first(X1,X2)) -> mark#(X1) p3: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p4: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p5: mark#(if(X1,X2,X3)) -> mark#(X1) p6: mark#(and(X1,X2)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(first(X1,X2)) -> mark#(X2) p2: mark#(and(X1,X2)) -> mark#(X1) p3: mark#(if(X1,X2,X3)) -> mark#(X1) p4: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p5: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p6: mark#(first(X1,X2)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = ((0,0),(1,0)) x1 + (1,2) first_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,1)) x2 + (13,15) and_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (12,13) if_A(x1,x2,x3) = ((1,0),(0,0)) x1 + ((1,0),(1,1)) x2 + x3 + (2,1) active#_A(x1) = ((0,0),(1,0)) x1 + (1,1) mark_A(x1) = ((1,0),(1,1)) x1 + (0,10) s_A(x1) = (3,7) cons_A(x1,x2) = (4,11) active_A(x1) = x1 + (0,12) true_A() = (2,11) false_A() = (2,1) add_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,1)) x2 + (2,9) |0|_A() = (2,1) nil_A() = (14,2) from_A(x1) = ((0,0),(1,0)) x1 + (5,14) precedence: and = if = mark = cons = active = false = add = |0| > mark# = active# > first > true = nil > s = from partial status: pi(mark#) = [] pi(first) = [] pi(and) = [] pi(if) = [] pi(active#) = [] pi(mark) = [] pi(s) = [] pi(cons) = [] pi(active) = [] pi(true) = [] pi(false) = [] pi(add) = [] pi(|0|) = [] pi(nil) = [] pi(from) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(first(X1,X2)) -> mark#(X2) p2: mark#(and(X1,X2)) -> mark#(X1) p3: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p4: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p5: mark#(first(X1,X2)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(first(X1,X2)) -> mark#(X2) p2: mark#(first(X1,X2)) -> mark#(X1) p3: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p4: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p5: mark#(and(X1,X2)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = ((0,0),(1,0)) x1 + (8,10) first_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (0,23) active#_A(x1) = ((0,0),(1,0)) x1 + (8,9) mark_A(x1) = x1 + (0,11) s_A(x1) = (8,22) cons_A(x1,x2) = ((0,0),(1,0)) x1 + (7,0) and_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (9,8) active_A(x1) = x1 + (0,9) true_A() = (4,12) false_A() = (6,12) if_A(x1,x2,x3) = ((1,0),(0,0)) x1 + x2 + x3 + (1,3) add_A(x1,x2) = x2 + (9,25) |0|_A() = (2,1) nil_A() = (1,22) from_A(x1) = ((1,0),(1,0)) x1 + (9,12) precedence: true = if > mark > first > mark# = active# = s = cons = and = active > false = add = |0| = nil = from partial status: pi(mark#) = [] pi(first) = [] pi(active#) = [] pi(mark) = [] pi(s) = [] pi(cons) = [] pi(and) = [] pi(active) = [1] pi(true) = [] pi(false) = [] pi(if) = [2, 3] pi(add) = [2] pi(|0|) = [] pi(nil) = [] pi(from) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(first(X1,X2)) -> mark#(X2) p2: mark#(first(X1,X2)) -> mark#(X1) p3: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p4: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(first(X1,X2)) -> mark#(X2) p2: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p3: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p4: mark#(first(X1,X2)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = ((1,0),(1,1)) x1 + (1,1) first_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (18,24) active#_A(x1) = (3,25) mark_A(x1) = ((1,0),(1,1)) x1 + (0,9) s_A(x1) = (3,1) cons_A(x1,x2) = (1,2) active_A(x1) = x1 + (0,6) and_A(x1,x2) = ((1,0),(1,1)) x2 + (0,5) true_A() = (1,2) false_A() = (0,1) if_A(x1,x2,x3) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + ((1,0),(1,1)) x3 + (7,1) add_A(x1,x2) = ((1,0),(1,1)) x2 + (4,14) |0|_A() = (1,1) nil_A() = (19,2) from_A(x1) = ((0,0),(1,0)) x1 + (4,3) precedence: mark = s = active = and > active# > mark# = first > cons = true = false = if = add = |0| = nil = from partial status: pi(mark#) = [1] pi(first) = [1] pi(active#) = [] pi(mark) = [] pi(s) = [] pi(cons) = [] pi(active) = [] pi(and) = [] pi(true) = [] pi(false) = [] pi(if) = [2, 3] pi(add) = [2] pi(|0|) = [] pi(nil) = [] pi(from) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(first(X1,X2)) -> mark#(X2) p2: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p3: mark#(first(X1,X2)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(first(X1,X2)) -> mark#(X2) p2: mark#(first(X1,X2)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = ((1,0),(0,0)) x1 first_A(x1,x2) = x1 + ((1,0),(1,0)) x2 + (1,1) precedence: first > mark# partial status: pi(mark#) = [] pi(first) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(first(X1,X2)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(first(X1,X2)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = ((1,0),(1,1)) x1 first_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (1,1) precedence: mark# = first partial status: pi(mark#) = [1] pi(first) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) p2: s#(active(X)) -> s#(X) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: s#_A(x1) = ((1,0),(0,0)) x1 + (1,1) mark_A(x1) = x1 + (2,2) active_A(x1) = ((1,0),(0,0)) x1 + (2,2) precedence: s# = mark = active partial status: pi(s#) = [] pi(mark) = [1] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: s#(active(X)) -> s#(X) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(active(X)) -> s#(X) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: s#_A(x1) = ((1,0),(1,0)) x1 + (2,2) active_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: s# = active partial status: pi(s#) = [] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(mark(X1),X2) -> add#(X1,X2) p2: add#(X1,active(X2)) -> add#(X1,X2) p3: add#(active(X1),X2) -> add#(X1,X2) p4: add#(X1,mark(X2)) -> add#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: add#_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (1,2) mark_A(x1) = ((1,0),(0,0)) x1 + (2,3) active_A(x1) = ((1,0),(0,0)) x1 + (2,1) precedence: add# = mark > active partial status: pi(add#) = [] pi(mark) = [] pi(active) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: add#(mark(X1),X2) -> add#(X1,X2) p2: add#(active(X1),X2) -> add#(X1,X2) p3: add#(X1,mark(X2)) -> add#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(mark(X1),X2) -> add#(X1,X2) p2: add#(X1,mark(X2)) -> add#(X1,X2) p3: add#(active(X1),X2) -> add#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: add#_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (1,2) mark_A(x1) = ((1,0),(0,0)) x1 + (2,1) active_A(x1) = ((1,0),(0,0)) x1 + (2,1) precedence: add# = mark = active partial status: pi(add#) = [] pi(mark) = [] pi(active) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: add#(mark(X1),X2) -> add#(X1,X2) p2: add#(active(X1),X2) -> add#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(mark(X1),X2) -> add#(X1,X2) p2: add#(active(X1),X2) -> add#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: add#_A(x1,x2) = x1 mark_A(x1) = ((1,0),(1,0)) x1 + (1,1) active_A(x1) = x1 + (1,1) precedence: mark > add# > active partial status: pi(add#) = [1] pi(mark) = [] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: add#(mark(X1),X2) -> add#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(mark(X1),X2) -> add#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: add#_A(x1,x2) = x1 mark_A(x1) = x1 + (1,1) precedence: add# = mark partial status: pi(add#) = [] pi(mark) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(X1,active(X2)) -> cons#(X1,X2) p3: cons#(active(X1),X2) -> cons#(X1,X2) p4: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: cons#_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (1,2) mark_A(x1) = ((1,0),(0,0)) x1 + (2,3) active_A(x1) = ((1,0),(0,0)) x1 + (2,1) precedence: cons# = mark > active partial status: pi(cons#) = [] pi(mark) = [] pi(active) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(active(X1),X2) -> cons#(X1,X2) p3: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(X1,mark(X2)) -> cons#(X1,X2) p3: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: cons#_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (2,2) mark_A(x1) = ((1,0),(0,0)) x1 + (3,1) active_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: cons# = mark = active partial status: pi(cons#) = [] pi(mark) = [] pi(active) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: cons#_A(x1,x2) = x1 mark_A(x1) = ((1,0),(1,0)) x1 + (1,1) active_A(x1) = x1 + (1,1) precedence: mark > cons# > active partial status: pi(cons#) = [1] pi(mark) = [] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: cons#_A(x1,x2) = x1 mark_A(x1) = x1 + (1,1) precedence: cons# = mark partial status: pi(cons#) = [] pi(mark) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(mark(X1),X2) -> first#(X1,X2) p2: first#(X1,active(X2)) -> first#(X1,X2) p3: first#(active(X1),X2) -> first#(X1,X2) p4: first#(X1,mark(X2)) -> first#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: first#_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (1,2) mark_A(x1) = ((1,0),(0,0)) x1 + (2,3) active_A(x1) = ((1,0),(0,0)) x1 + (2,1) precedence: first# = mark > active partial status: pi(first#) = [] pi(mark) = [] pi(active) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: first#(mark(X1),X2) -> first#(X1,X2) p2: first#(active(X1),X2) -> first#(X1,X2) p3: first#(X1,mark(X2)) -> first#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(mark(X1),X2) -> first#(X1,X2) p2: first#(X1,mark(X2)) -> first#(X1,X2) p3: first#(active(X1),X2) -> first#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: first#_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (1,2) mark_A(x1) = ((1,0),(0,0)) x1 + (2,1) active_A(x1) = ((1,0),(0,0)) x1 + (2,1) precedence: first# = mark = active partial status: pi(first#) = [] pi(mark) = [] pi(active) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: first#(mark(X1),X2) -> first#(X1,X2) p2: first#(active(X1),X2) -> first#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(mark(X1),X2) -> first#(X1,X2) p2: first#(active(X1),X2) -> first#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: first#_A(x1,x2) = x1 mark_A(x1) = ((1,0),(1,0)) x1 + (1,1) active_A(x1) = x1 + (1,1) precedence: mark > first# > active partial status: pi(first#) = [1] pi(mark) = [] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: first#(mark(X1),X2) -> first#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(mark(X1),X2) -> first#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: first#_A(x1,x2) = x1 mark_A(x1) = x1 + (1,1) precedence: first# = mark partial status: pi(first#) = [] pi(mark) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: from#(mark(X)) -> from#(X) p2: from#(active(X)) -> from#(X) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: from#_A(x1) = ((1,0),(0,0)) x1 + (1,1) mark_A(x1) = x1 + (2,2) active_A(x1) = ((1,0),(0,0)) x1 + (2,2) precedence: from# = mark = active partial status: pi(from#) = [] pi(mark) = [1] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: from#(active(X)) -> from#(X) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: from#(active(X)) -> from#(X) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: from#_A(x1) = ((1,0),(1,0)) x1 + (2,2) active_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: from# = active partial status: pi(from#) = [] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: and#(mark(X1),X2) -> and#(X1,X2) p2: and#(X1,active(X2)) -> and#(X1,X2) p3: and#(active(X1),X2) -> and#(X1,X2) p4: and#(X1,mark(X2)) -> and#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: and#_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (1,2) mark_A(x1) = ((1,0),(0,0)) x1 + (2,3) active_A(x1) = ((1,0),(0,0)) x1 + (2,1) precedence: and# = mark > active partial status: pi(and#) = [] pi(mark) = [] pi(active) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: and#(mark(X1),X2) -> and#(X1,X2) p2: and#(active(X1),X2) -> and#(X1,X2) p3: and#(X1,mark(X2)) -> and#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: and#(mark(X1),X2) -> and#(X1,X2) p2: and#(X1,mark(X2)) -> and#(X1,X2) p3: and#(active(X1),X2) -> and#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: and#_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (2,2) mark_A(x1) = ((1,0),(0,0)) x1 + (3,1) active_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: and# = mark = active partial status: pi(and#) = [] pi(mark) = [] pi(active) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: and#(mark(X1),X2) -> and#(X1,X2) p2: and#(active(X1),X2) -> and#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: and#(mark(X1),X2) -> and#(X1,X2) p2: and#(active(X1),X2) -> and#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: and#_A(x1,x2) = x1 mark_A(x1) = ((1,0),(1,0)) x1 + (1,1) active_A(x1) = x1 + (1,1) precedence: mark > and# > active partial status: pi(and#) = [1] pi(mark) = [] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: and#(mark(X1),X2) -> and#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: and#(mark(X1),X2) -> and#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: and#_A(x1,x2) = x1 mark_A(x1) = x1 + (1,1) precedence: and# = mark partial status: pi(and#) = [] pi(mark) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(X1,X2,active(X3)) -> if#(X1,X2,X3) p3: if#(X1,active(X2),X3) -> if#(X1,X2,X3) p4: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p5: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) p6: if#(X1,mark(X2),X3) -> if#(X1,X2,X3) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: if#_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + ((0,0),(1,0)) x3 + (1,2) mark_A(x1) = ((1,0),(0,0)) x1 + (2,1) active_A(x1) = ((1,0),(0,0)) x1 + (2,1) precedence: if# = mark = active partial status: pi(if#) = [] pi(mark) = [] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(X1,X2,active(X3)) -> if#(X1,X2,X3) p2: if#(X1,active(X2),X3) -> if#(X1,X2,X3) p3: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p4: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) p5: if#(X1,mark(X2),X3) -> if#(X1,X2,X3) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(X1,X2,active(X3)) -> if#(X1,X2,X3) p2: if#(X1,mark(X2),X3) -> if#(X1,X2,X3) p3: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) p4: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p5: if#(X1,active(X2),X3) -> if#(X1,X2,X3) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: if#_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + ((0,0),(1,0)) x3 + (1,2) active_A(x1) = ((1,0),(0,0)) x1 + (2,1) mark_A(x1) = ((1,0),(0,0)) x1 + (2,1) precedence: if# = active = mark partial status: pi(if#) = [] pi(active) = [] pi(mark) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(X1,X2,active(X3)) -> if#(X1,X2,X3) p2: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) p3: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p4: if#(X1,active(X2),X3) -> if#(X1,X2,X3) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(X1,X2,active(X3)) -> if#(X1,X2,X3) p2: if#(X1,active(X2),X3) -> if#(X1,X2,X3) p3: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p4: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: if#_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (1,2) active_A(x1) = ((1,0),(0,0)) x1 + (2,1) mark_A(x1) = (2,0) precedence: if# = active = mark partial status: pi(if#) = [] pi(active) = [] pi(mark) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(X1,X2,active(X3)) -> if#(X1,X2,X3) p2: if#(X1,active(X2),X3) -> if#(X1,X2,X3) p3: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(X1,X2,active(X3)) -> if#(X1,X2,X3) p2: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) p3: if#(X1,active(X2),X3) -> if#(X1,X2,X3) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: if#_A(x1,x2,x3) = x1 + ((0,0),(1,0)) x2 + (2,2) active_A(x1) = x1 + (1,1) mark_A(x1) = (1,1) precedence: if# > active = mark partial status: pi(if#) = [1] pi(active) = [1] pi(mark) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(X1,X2,active(X3)) -> if#(X1,X2,X3) p2: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(X1,X2,active(X3)) -> if#(X1,X2,X3) p2: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: if#_A(x1,x2,x3) = x3 active_A(x1) = ((1,0),(1,1)) x1 + (1,1) mark_A(x1) = x1 + (1,0) precedence: active > if# = mark partial status: pi(if#) = [] pi(active) = [] pi(mark) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: if#_A(x1,x2,x3) = x3 mark_A(x1) = x1 precedence: mark > if# partial status: pi(if#) = [3] pi(mark) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.