YES We show the termination of the TRS R: |2nd|(cons(X,n__cons(Y,Z))) -> activate(Y) from(X) -> cons(X,n__from(n__s(X))) cons(X1,X2) -> n__cons(X1,X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__cons(X1,X2)) -> cons(activate(X1),X2) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: |2nd|#(cons(X,n__cons(Y,Z))) -> activate#(Y) p2: from#(X) -> cons#(X,n__from(n__s(X))) p3: activate#(n__cons(X1,X2)) -> cons#(activate(X1),X2) p4: activate#(n__cons(X1,X2)) -> activate#(X1) p5: activate#(n__from(X)) -> from#(activate(X)) p6: activate#(n__from(X)) -> activate#(X) p7: activate#(n__s(X)) -> s#(activate(X)) p8: activate#(n__s(X)) -> activate#(X) and R consists of: r1: |2nd|(cons(X,n__cons(Y,Z))) -> activate(Y) r2: from(X) -> cons(X,n__from(n__s(X))) r3: cons(X1,X2) -> n__cons(X1,X2) r4: from(X) -> n__from(X) r5: s(X) -> n__s(X) r6: activate(n__cons(X1,X2)) -> cons(activate(X1),X2) r7: activate(n__from(X)) -> from(activate(X)) r8: activate(n__s(X)) -> s(activate(X)) r9: activate(X) -> X The estimated dependency graph contains the following SCCs: {p4, p6, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__from(X)) -> activate#(X) p3: activate#(n__cons(X1,X2)) -> activate#(X1) and R consists of: r1: |2nd|(cons(X,n__cons(Y,Z))) -> activate(Y) r2: from(X) -> cons(X,n__from(n__s(X))) r3: cons(X1,X2) -> n__cons(X1,X2) r4: from(X) -> n__from(X) r5: s(X) -> n__s(X) r6: activate(n__cons(X1,X2)) -> cons(activate(X1),X2) r7: activate(n__from(X)) -> from(activate(X)) r8: activate(n__s(X)) -> s(activate(X)) r9: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = x1 + (1,2) n__s_A(x1) = ((1,0),(1,1)) x1 + (2,3) n__from_A(x1) = x1 + (2,1) n__cons_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (2,3) precedence: n__s = n__from > activate# = n__cons partial status: pi(activate#) = [1] pi(n__s) = [1] pi(n__from) = [1] pi(n__cons) = [2] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__cons(X1,X2)) -> activate#(X1) and R consists of: r1: |2nd|(cons(X,n__cons(Y,Z))) -> activate(Y) r2: from(X) -> cons(X,n__from(n__s(X))) r3: cons(X1,X2) -> n__cons(X1,X2) r4: from(X) -> n__from(X) r5: s(X) -> n__s(X) r6: activate(n__cons(X1,X2)) -> cons(activate(X1),X2) r7: activate(n__from(X)) -> from(activate(X)) r8: activate(n__s(X)) -> s(activate(X)) r9: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__cons(X1,X2)) -> activate#(X1) and R consists of: r1: |2nd|(cons(X,n__cons(Y,Z))) -> activate(Y) r2: from(X) -> cons(X,n__from(n__s(X))) r3: cons(X1,X2) -> n__cons(X1,X2) r4: from(X) -> n__from(X) r5: s(X) -> n__s(X) r6: activate(n__cons(X1,X2)) -> cons(activate(X1),X2) r7: activate(n__from(X)) -> from(activate(X)) r8: activate(n__s(X)) -> s(activate(X)) r9: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = ((1,0),(1,0)) x1 + (1,2) n__s_A(x1) = ((1,0),(0,0)) x1 + (2,1) n__cons_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (2,1) precedence: activate# = n__s = n__cons partial status: pi(activate#) = [] pi(n__s) = [] pi(n__cons) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__cons(X1,X2)) -> activate#(X1) and R consists of: r1: |2nd|(cons(X,n__cons(Y,Z))) -> activate(Y) r2: from(X) -> cons(X,n__from(n__s(X))) r3: cons(X1,X2) -> n__cons(X1,X2) r4: from(X) -> n__from(X) r5: s(X) -> n__s(X) r6: activate(n__cons(X1,X2)) -> cons(activate(X1),X2) r7: activate(n__from(X)) -> from(activate(X)) r8: activate(n__s(X)) -> s(activate(X)) r9: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__cons(X1,X2)) -> activate#(X1) and R consists of: r1: |2nd|(cons(X,n__cons(Y,Z))) -> activate(Y) r2: from(X) -> cons(X,n__from(n__s(X))) r3: cons(X1,X2) -> n__cons(X1,X2) r4: from(X) -> n__from(X) r5: s(X) -> n__s(X) r6: activate(n__cons(X1,X2)) -> cons(activate(X1),X2) r7: activate(n__from(X)) -> from(activate(X)) r8: activate(n__s(X)) -> s(activate(X)) r9: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = ((1,0),(1,1)) x1 n__cons_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (1,1) precedence: activate# > n__cons partial status: pi(activate#) = [1] pi(n__cons) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.