YES We show the termination of the TRS R: a__fst(|0|(),Z) -> nil() a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) a__from(X) -> cons(mark(X),from(s(X))) a__add(|0|(),X) -> mark(X) a__add(s(X),Y) -> s(add(X,Y)) a__len(nil()) -> |0|() a__len(cons(X,Z)) -> s(len(Z)) mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) mark(len(X)) -> a__len(mark(X)) mark(|0|()) -> |0|() mark(s(X)) -> s(X) mark(nil()) -> nil() mark(cons(X1,X2)) -> cons(mark(X1),X2) a__fst(X1,X2) -> fst(X1,X2) a__from(X) -> from(X) a__add(X1,X2) -> add(X1,X2) a__len(X) -> len(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__fst#(s(X),cons(Y,Z)) -> mark#(Y) p2: a__from#(X) -> mark#(X) p3: a__add#(|0|(),X) -> mark#(X) p4: mark#(fst(X1,X2)) -> a__fst#(mark(X1),mark(X2)) p5: mark#(fst(X1,X2)) -> mark#(X1) p6: mark#(fst(X1,X2)) -> mark#(X2) p7: mark#(from(X)) -> a__from#(mark(X)) p8: mark#(from(X)) -> mark#(X) p9: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p10: mark#(add(X1,X2)) -> mark#(X1) p11: mark#(add(X1,X2)) -> mark#(X2) p12: mark#(len(X)) -> a__len#(mark(X)) p13: mark#(len(X)) -> mark#(X) p14: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__fst#(s(X),cons(Y,Z)) -> mark#(Y) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(len(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> mark#(X2) p5: mark#(add(X1,X2)) -> mark#(X1) p6: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p7: a__add#(|0|(),X) -> mark#(X) p8: mark#(from(X)) -> mark#(X) p9: mark#(from(X)) -> a__from#(mark(X)) p10: a__from#(X) -> mark#(X) p11: mark#(fst(X1,X2)) -> mark#(X2) p12: mark#(fst(X1,X2)) -> mark#(X1) p13: mark#(fst(X1,X2)) -> a__fst#(mark(X1),mark(X2)) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__fst#_A(x1,x2) = x2 + (14,3) s_A(x1) = (12,14) cons_A(x1,x2) = x1 + (16,3) mark#_A(x1) = x1 + (13,5) len_A(x1) = x1 + (15,1) add_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + (11,7) a__add#_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (24,6) mark_A(x1) = ((1,0),(1,0)) x1 + (0,5) |0|_A() = (14,6) from_A(x1) = ((1,0),(1,0)) x1 + (17,12) a__from#_A(x1) = x1 + (17,6) fst_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (1,4) a__fst_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (1,5) nil_A() = (0,1) a__from_A(x1) = ((1,0),(1,0)) x1 + (17,13) a__add_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + (11,15) a__len_A(x1) = x1 + (15,12) precedence: cons = mark = a__fst = a__from = a__add > s = a__len > len = |0| > fst = nil > add = from > a__from# > a__add# > mark# > a__fst# partial status: pi(a__fst#) = [2] pi(s) = [] pi(cons) = [] pi(mark#) = [1] pi(len) = [] pi(add) = [] pi(a__add#) = [2] pi(mark) = [] pi(|0|) = [] pi(from) = [] pi(a__from#) = [] pi(fst) = [] pi(a__fst) = [] pi(nil) = [] pi(a__from) = [] pi(a__add) = [] pi(a__len) = [1] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__fst#(s(X),cons(Y,Z)) -> mark#(Y) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(add(X1,X2)) -> mark#(X2) p4: mark#(add(X1,X2)) -> mark#(X1) p5: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p6: a__add#(|0|(),X) -> mark#(X) p7: mark#(from(X)) -> mark#(X) p8: mark#(from(X)) -> a__from#(mark(X)) p9: a__from#(X) -> mark#(X) p10: mark#(fst(X1,X2)) -> mark#(X2) p11: mark#(fst(X1,X2)) -> mark#(X1) p12: mark#(fst(X1,X2)) -> a__fst#(mark(X1),mark(X2)) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__fst#(s(X),cons(Y,Z)) -> mark#(Y) p2: mark#(fst(X1,X2)) -> a__fst#(mark(X1),mark(X2)) p3: mark#(fst(X1,X2)) -> mark#(X1) p4: mark#(fst(X1,X2)) -> mark#(X2) p5: mark#(from(X)) -> a__from#(mark(X)) p6: a__from#(X) -> mark#(X) p7: mark#(from(X)) -> mark#(X) p8: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p9: a__add#(|0|(),X) -> mark#(X) p10: mark#(add(X1,X2)) -> mark#(X1) p11: mark#(add(X1,X2)) -> mark#(X2) p12: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__fst#_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,0)) x2 + (1,1) s_A(x1) = (4,1) cons_A(x1,x2) = ((1,0),(0,0)) x1 + (5,23) mark#_A(x1) = ((1,0),(1,1)) x1 + (2,12) fst_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,0)) x2 + (3,22) mark_A(x1) = ((1,0),(1,1)) x1 + (0,20) from_A(x1) = ((1,0),(1,0)) x1 + (6,1) a__from#_A(x1) = ((1,0),(0,0)) x1 + (3,11) add_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (22,21) a__add#_A(x1,x2) = x2 + (23,13) |0|_A() = (1,21) a__fst_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,0)) x2 + (3,24) nil_A() = (2,22) a__from_A(x1) = ((1,0),(1,0)) x1 + (6,2) a__add_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (22,22) a__len_A(x1) = ((1,0),(0,0)) x1 + (1,25) len_A(x1) = ((1,0),(0,0)) x1 + (1,24) precedence: add > nil = a__len > fst > a__fst# = a__fst > mark# = a__from# = a__add# > s = mark = |0| = a__add > from = a__from > cons = len partial status: pi(a__fst#) = [] pi(s) = [] pi(cons) = [] pi(mark#) = [1] pi(fst) = [] pi(mark) = [] pi(from) = [] pi(a__from#) = [] pi(add) = [1] pi(a__add#) = [2] pi(|0|) = [] pi(a__fst) = [] pi(nil) = [] pi(a__from) = [] pi(a__add) = [] pi(a__len) = [] pi(len) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__fst#(s(X),cons(Y,Z)) -> mark#(Y) p2: mark#(fst(X1,X2)) -> a__fst#(mark(X1),mark(X2)) p3: mark#(fst(X1,X2)) -> mark#(X1) p4: mark#(fst(X1,X2)) -> mark#(X2) p5: a__from#(X) -> mark#(X) p6: mark#(from(X)) -> mark#(X) p7: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p8: a__add#(|0|(),X) -> mark#(X) p9: mark#(add(X1,X2)) -> mark#(X1) p10: mark#(add(X1,X2)) -> mark#(X2) p11: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p6, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__fst#(s(X),cons(Y,Z)) -> mark#(Y) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(add(X1,X2)) -> mark#(X2) p4: mark#(add(X1,X2)) -> mark#(X1) p5: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p6: a__add#(|0|(),X) -> mark#(X) p7: mark#(from(X)) -> mark#(X) p8: mark#(fst(X1,X2)) -> mark#(X2) p9: mark#(fst(X1,X2)) -> mark#(X1) p10: mark#(fst(X1,X2)) -> a__fst#(mark(X1),mark(X2)) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__fst#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (0,2) s_A(x1) = (3,3) cons_A(x1,x2) = x1 + (3,2) mark#_A(x1) = ((1,0),(1,1)) x1 add_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (5,0) a__add#_A(x1,x2) = x2 + (1,1) mark_A(x1) = ((1,0),(1,0)) x1 + (0,4) |0|_A() = (0,0) from_A(x1) = x1 + (8,1) fst_A(x1,x2) = x1 + ((1,0),(1,0)) x2 + (4,1) a__fst_A(x1,x2) = x1 + ((1,0),(1,0)) x2 + (4,2) nil_A() = (1,1) a__from_A(x1) = x1 + (8,7) a__add_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (5,5) a__len_A(x1) = (4,7) len_A(x1) = (4,3) precedence: |0| = nil = a__len > s = len > cons = add = mark = a__fst = a__from = a__add > from > fst > a__fst# > mark# > a__add# partial status: pi(a__fst#) = [] pi(s) = [] pi(cons) = [] pi(mark#) = [1] pi(add) = [] pi(a__add#) = [2] pi(mark) = [] pi(|0|) = [] pi(from) = [1] pi(fst) = [] pi(a__fst) = [] pi(nil) = [] pi(a__from) = [] pi(a__add) = [] pi(a__len) = [] pi(len) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__fst#(s(X),cons(Y,Z)) -> mark#(Y) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(add(X1,X2)) -> mark#(X2) p4: mark#(add(X1,X2)) -> mark#(X1) p5: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p6: mark#(from(X)) -> mark#(X) p7: mark#(fst(X1,X2)) -> mark#(X2) p8: mark#(fst(X1,X2)) -> mark#(X1) p9: mark#(fst(X1,X2)) -> a__fst#(mark(X1),mark(X2)) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__fst#(s(X),cons(Y,Z)) -> mark#(Y) p2: mark#(fst(X1,X2)) -> a__fst#(mark(X1),mark(X2)) p3: mark#(fst(X1,X2)) -> mark#(X1) p4: mark#(fst(X1,X2)) -> mark#(X2) p5: mark#(from(X)) -> mark#(X) p6: mark#(add(X1,X2)) -> mark#(X1) p7: mark#(add(X1,X2)) -> mark#(X2) p8: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__fst#_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (1,1) s_A(x1) = (7,22) cons_A(x1,x2) = x1 + ((0,0),(1,0)) x2 + (2,1) mark#_A(x1) = ((1,0),(1,1)) x1 + (1,2) fst_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (6,3) mark_A(x1) = ((1,0),(1,1)) x1 + (0,4) from_A(x1) = ((1,0),(1,0)) x1 + (8,10) add_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (9,1) a__fst_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (6,4) |0|_A() = (0,0) nil_A() = (1,1) a__from_A(x1) = ((1,0),(1,0)) x1 + (8,21) a__add_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (9,5) a__len_A(x1) = (17,23) len_A(x1) = (17,3) precedence: a__from > cons > from > nil > mark = add = a__add > s > fst = a__fst > mark# > a__fst# > |0| = a__len = len partial status: pi(a__fst#) = [2] pi(s) = [] pi(cons) = [] pi(mark#) = [1] pi(fst) = [] pi(mark) = [1] pi(from) = [] pi(add) = [] pi(a__fst) = [2] pi(|0|) = [] pi(nil) = [] pi(a__from) = [] pi(a__add) = [2] pi(a__len) = [] pi(len) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__fst#(s(X),cons(Y,Z)) -> mark#(Y) p2: mark#(fst(X1,X2)) -> a__fst#(mark(X1),mark(X2)) p3: mark#(fst(X1,X2)) -> mark#(X1) p4: mark#(fst(X1,X2)) -> mark#(X2) p5: mark#(from(X)) -> mark#(X) p6: mark#(add(X1,X2)) -> mark#(X1) p7: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__fst#(s(X),cons(Y,Z)) -> mark#(Y) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(add(X1,X2)) -> mark#(X1) p4: mark#(from(X)) -> mark#(X) p5: mark#(fst(X1,X2)) -> mark#(X2) p6: mark#(fst(X1,X2)) -> mark#(X1) p7: mark#(fst(X1,X2)) -> a__fst#(mark(X1),mark(X2)) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__fst#_A(x1,x2) = ((0,0),(1,0)) x1 + x2 + (1,8) s_A(x1) = ((0,0),(1,0)) x1 + (10,3) cons_A(x1,x2) = ((1,0),(1,0)) x1 + (12,2) mark#_A(x1) = ((1,0),(1,1)) x1 + (1,4) add_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (11,9) from_A(x1) = ((1,0),(1,1)) x1 + (13,5) fst_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (9,1) mark_A(x1) = ((1,0),(1,1)) x1 + (0,7) a__fst_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (9,2) |0|_A() = (1,3) nil_A() = (2,0) a__from_A(x1) = ((1,0),(1,1)) x1 + (13,6) a__add_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (11,12) a__len_A(x1) = (11,2) len_A(x1) = (11,1) precedence: nil > |0| > s > a__fst# = cons = mark# = fst = mark = a__fst = a__from = a__add = a__len = len > from > add partial status: pi(a__fst#) = [] pi(s) = [] pi(cons) = [] pi(mark#) = [1] pi(add) = [2] pi(from) = [1] pi(fst) = [2] pi(mark) = [1] pi(a__fst) = [2] pi(|0|) = [] pi(nil) = [] pi(a__from) = [] pi(a__add) = [2] pi(a__len) = [] pi(len) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(cons(X1,X2)) -> mark#(X1) p2: mark#(add(X1,X2)) -> mark#(X1) p3: mark#(from(X)) -> mark#(X) p4: mark#(fst(X1,X2)) -> mark#(X2) p5: mark#(fst(X1,X2)) -> mark#(X1) p6: mark#(fst(X1,X2)) -> a__fst#(mark(X1),mark(X2)) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(cons(X1,X2)) -> mark#(X1) p2: mark#(fst(X1,X2)) -> mark#(X1) p3: mark#(fst(X1,X2)) -> mark#(X2) p4: mark#(from(X)) -> mark#(X) p5: mark#(add(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = x1 cons_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (1,1) fst_A(x1,x2) = x1 + x2 + (1,1) from_A(x1) = x1 + (1,1) add_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (1,1) precedence: cons = fst > mark# = from = add partial status: pi(mark#) = [1] pi(cons) = [1, 2] pi(fst) = [1] pi(from) = [] pi(add) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> mark#(X1) p2: mark#(fst(X1,X2)) -> mark#(X2) p3: mark#(from(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> mark#(X1) p2: mark#(add(X1,X2)) -> mark#(X1) p3: mark#(from(X)) -> mark#(X) p4: mark#(fst(X1,X2)) -> mark#(X2) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = x1 fst_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (1,1) add_A(x1,x2) = x1 + (1,1) from_A(x1) = ((1,0),(1,1)) x1 + (1,1) precedence: fst > mark# = add = from partial status: pi(mark#) = [1] pi(fst) = [1, 2] pi(add) = [] pi(from) = [1] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> mark#(X1) p2: mark#(add(X1,X2)) -> mark#(X1) p3: mark#(fst(X1,X2)) -> mark#(X2) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> mark#(X1) p2: mark#(fst(X1,X2)) -> mark#(X2) p3: mark#(add(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = ((1,0),(0,0)) x1 + (2,1) fst_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (1,2) add_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (3,2) precedence: mark# = fst = add partial status: pi(mark#) = [] pi(fst) = [2] pi(add) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> mark#(X2) p2: mark#(add(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> mark#(X2) p2: mark#(add(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = ((1,0),(0,0)) x1 fst_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (1,1) add_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (1,1) precedence: mark# = fst > add partial status: pi(mark#) = [] pi(fst) = [1] pi(add) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(add(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(add(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = ((1,0),(1,1)) x1 add_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (1,1) precedence: mark# = add partial status: pi(mark#) = [1] pi(add) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.