YES We show the termination of the TRS R: from(X) -> cons(X,n__from(n__s(X))) head(cons(X,XS)) -> X |2nd|(cons(X,XS)) -> head(activate(XS)) take(|0|(),XS) -> nil() take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) sel(|0|(),cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) from(X) -> n__from(X) s(X) -> n__s(X) take(X1,X2) -> n__take(X1,X2) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: |2nd|#(cons(X,XS)) -> head#(activate(XS)) p2: |2nd|#(cons(X,XS)) -> activate#(XS) p3: take#(s(N),cons(X,XS)) -> activate#(XS) p4: sel#(s(N),cons(X,XS)) -> sel#(N,activate(XS)) p5: sel#(s(N),cons(X,XS)) -> activate#(XS) p6: activate#(n__from(X)) -> from#(activate(X)) p7: activate#(n__from(X)) -> activate#(X) p8: activate#(n__s(X)) -> s#(activate(X)) p9: activate#(n__s(X)) -> activate#(X) p10: activate#(n__take(X1,X2)) -> take#(activate(X1),activate(X2)) p11: activate#(n__take(X1,X2)) -> activate#(X1) p12: activate#(n__take(X1,X2)) -> activate#(X2) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: s(X) -> n__s(X) r10: take(X1,X2) -> n__take(X1,X2) r11: activate(n__from(X)) -> from(activate(X)) r12: activate(n__s(X)) -> s(activate(X)) r13: activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) r14: activate(X) -> X The estimated dependency graph contains the following SCCs: {p4} {p3, p7, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sel#(s(N),cons(X,XS)) -> sel#(N,activate(XS)) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: s(X) -> n__s(X) r10: take(X1,X2) -> n__take(X1,X2) r11: activate(n__from(X)) -> from(activate(X)) r12: activate(n__s(X)) -> s(activate(X)) r13: activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) r14: activate(X) -> X The set of usable rules consists of r1, r4, r5, r8, r9, r10, r11, r12, r13, r14 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: sel#_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (4,2) s_A(x1) = ((1,0),(1,0)) x1 + (6,3) cons_A(x1,x2) = ((1,0),(1,1)) x2 + (1,6) activate_A(x1) = ((1,0),(1,1)) x1 + (3,5) from_A(x1) = (2,13) n__from_A(x1) = (0,6) n__s_A(x1) = ((1,0),(1,0)) x1 + (6,2) take_A(x1,x2) = ((0,0),(1,0)) x1 + (3,5) |0|_A() = (0,7) nil_A() = (0,6) n__take_A(x1,x2) = ((0,0),(1,0)) x1 + (0,4) precedence: sel# = activate = from = take > |0| > n__from > cons > s = n__s > nil = n__take partial status: pi(sel#) = [] pi(s) = [] pi(cons) = [2] pi(activate) = [] pi(from) = [] pi(n__from) = [] pi(n__s) = [] pi(take) = [] pi(|0|) = [] pi(nil) = [] pi(n__take) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: take#(s(N),cons(X,XS)) -> activate#(XS) p2: activate#(n__take(X1,X2)) -> activate#(X2) p3: activate#(n__take(X1,X2)) -> activate#(X1) p4: activate#(n__take(X1,X2)) -> take#(activate(X1),activate(X2)) p5: activate#(n__s(X)) -> activate#(X) p6: activate#(n__from(X)) -> activate#(X) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: s(X) -> n__s(X) r10: take(X1,X2) -> n__take(X1,X2) r11: activate(n__from(X)) -> from(activate(X)) r12: activate(n__s(X)) -> s(activate(X)) r13: activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) r14: activate(X) -> X The set of usable rules consists of r1, r4, r5, r8, r9, r10, r11, r12, r13, r14 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: take#_A(x1,x2) = x2 + (1,2) s_A(x1) = x1 + (0,8) cons_A(x1,x2) = ((1,0),(0,0)) x2 + (0,1) activate#_A(x1) = x1 + (0,2) n__take_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (2,5) activate_A(x1) = ((1,0),(1,1)) x1 + (0,2) n__s_A(x1) = x1 + (0,8) n__from_A(x1) = ((1,0),(1,1)) x1 + (2,8) from_A(x1) = ((1,0),(1,1)) x1 + (2,9) take_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (2,7) |0|_A() = (0,8) nil_A() = (0,8) precedence: s = activate = n__s > n__take = take = |0| > take# > activate# > cons = n__from = from > nil partial status: pi(take#) = [2] pi(s) = [] pi(cons) = [] pi(activate#) = [1] pi(n__take) = [] pi(activate) = [] pi(n__s) = [] pi(n__from) = [] pi(from) = [] pi(take) = [] pi(|0|) = [] pi(nil) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: take#(s(N),cons(X,XS)) -> activate#(XS) p2: activate#(n__take(X1,X2)) -> activate#(X2) p3: activate#(n__take(X1,X2)) -> activate#(X1) p4: activate#(n__s(X)) -> activate#(X) p5: activate#(n__from(X)) -> activate#(X) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: s(X) -> n__s(X) r10: take(X1,X2) -> n__take(X1,X2) r11: activate(n__from(X)) -> from(activate(X)) r12: activate(n__s(X)) -> s(activate(X)) r13: activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) r14: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__take(X1,X2)) -> activate#(X2) p2: activate#(n__from(X)) -> activate#(X) p3: activate#(n__s(X)) -> activate#(X) p4: activate#(n__take(X1,X2)) -> activate#(X1) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: s(X) -> n__s(X) r10: take(X1,X2) -> n__take(X1,X2) r11: activate(n__from(X)) -> from(activate(X)) r12: activate(n__s(X)) -> s(activate(X)) r13: activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) r14: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = ((1,0),(1,1)) x1 + (1,1) n__take_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (2,2) n__from_A(x1) = ((1,0),(1,1)) x1 + (2,2) n__s_A(x1) = ((1,0),(1,1)) x1 + (2,2) precedence: n__take = n__from = n__s > activate# partial status: pi(activate#) = [1] pi(n__take) = [1, 2] pi(n__from) = [1] pi(n__s) = [1] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__take(X1,X2)) -> activate#(X2) p2: activate#(n__from(X)) -> activate#(X) p3: activate#(n__take(X1,X2)) -> activate#(X1) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: s(X) -> n__s(X) r10: take(X1,X2) -> n__take(X1,X2) r11: activate(n__from(X)) -> from(activate(X)) r12: activate(n__s(X)) -> s(activate(X)) r13: activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) r14: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__take(X1,X2)) -> activate#(X2) p2: activate#(n__take(X1,X2)) -> activate#(X1) p3: activate#(n__from(X)) -> activate#(X) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: s(X) -> n__s(X) r10: take(X1,X2) -> n__take(X1,X2) r11: activate(n__from(X)) -> from(activate(X)) r12: activate(n__s(X)) -> s(activate(X)) r13: activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) r14: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = ((1,0),(1,1)) x1 + (1,2) n__take_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (2,3) n__from_A(x1) = x1 + (2,1) precedence: n__from > activate# = n__take partial status: pi(activate#) = [1] pi(n__take) = [1, 2] pi(n__from) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__take(X1,X2)) -> activate#(X1) p2: activate#(n__from(X)) -> activate#(X) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: s(X) -> n__s(X) r10: take(X1,X2) -> n__take(X1,X2) r11: activate(n__from(X)) -> from(activate(X)) r12: activate(n__s(X)) -> s(activate(X)) r13: activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) r14: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__take(X1,X2)) -> activate#(X1) p2: activate#(n__from(X)) -> activate#(X) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: s(X) -> n__s(X) r10: take(X1,X2) -> n__take(X1,X2) r11: activate(n__from(X)) -> from(activate(X)) r12: activate(n__s(X)) -> s(activate(X)) r13: activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) r14: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = x1 + (1,1) n__take_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (2,2) n__from_A(x1) = ((1,0),(1,1)) x1 + (2,2) precedence: activate# = n__take = n__from partial status: pi(activate#) = [1] pi(n__take) = [1, 2] pi(n__from) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__from(X)) -> activate#(X) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: s(X) -> n__s(X) r10: take(X1,X2) -> n__take(X1,X2) r11: activate(n__from(X)) -> from(activate(X)) r12: activate(n__s(X)) -> s(activate(X)) r13: activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) r14: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__from(X)) -> activate#(X) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: s(X) -> n__s(X) r10: take(X1,X2) -> n__take(X1,X2) r11: activate(n__from(X)) -> from(activate(X)) r12: activate(n__s(X)) -> s(activate(X)) r13: activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) r14: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = ((1,0),(1,0)) x1 + (2,2) n__from_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: activate# = n__from partial status: pi(activate#) = [] pi(n__from) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.