YES We show the termination of the TRS R: a__incr(nil()) -> nil() a__incr(cons(X,L)) -> cons(s(mark(X)),incr(L)) a__adx(nil()) -> nil() a__adx(cons(X,L)) -> a__incr(cons(mark(X),adx(L))) a__nats() -> a__adx(a__zeros()) a__zeros() -> cons(|0|(),zeros()) a__head(cons(X,L)) -> mark(X) a__tail(cons(X,L)) -> mark(L) mark(incr(X)) -> a__incr(mark(X)) mark(adx(X)) -> a__adx(mark(X)) mark(nats()) -> a__nats() mark(zeros()) -> a__zeros() mark(head(X)) -> a__head(mark(X)) mark(tail(X)) -> a__tail(mark(X)) mark(nil()) -> nil() mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(s(X)) -> s(mark(X)) mark(|0|()) -> |0|() a__incr(X) -> incr(X) a__adx(X) -> adx(X) a__nats() -> nats() a__zeros() -> zeros() a__head(X) -> head(X) a__tail(X) -> tail(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__incr#(cons(X,L)) -> mark#(X) p2: a__adx#(cons(X,L)) -> a__incr#(cons(mark(X),adx(L))) p3: a__adx#(cons(X,L)) -> mark#(X) p4: a__nats#() -> a__adx#(a__zeros()) p5: a__nats#() -> a__zeros#() p6: a__head#(cons(X,L)) -> mark#(X) p7: a__tail#(cons(X,L)) -> mark#(L) p8: mark#(incr(X)) -> a__incr#(mark(X)) p9: mark#(incr(X)) -> mark#(X) p10: mark#(adx(X)) -> a__adx#(mark(X)) p11: mark#(adx(X)) -> mark#(X) p12: mark#(nats()) -> a__nats#() p13: mark#(zeros()) -> a__zeros#() p14: mark#(head(X)) -> a__head#(mark(X)) p15: mark#(head(X)) -> mark#(X) p16: mark#(tail(X)) -> a__tail#(mark(X)) p17: mark#(tail(X)) -> mark#(X) p18: mark#(cons(X1,X2)) -> mark#(X1) p19: mark#(s(X)) -> mark#(X) and R consists of: r1: a__incr(nil()) -> nil() r2: a__incr(cons(X,L)) -> cons(s(mark(X)),incr(L)) r3: a__adx(nil()) -> nil() r4: a__adx(cons(X,L)) -> a__incr(cons(mark(X),adx(L))) r5: a__nats() -> a__adx(a__zeros()) r6: a__zeros() -> cons(|0|(),zeros()) r7: a__head(cons(X,L)) -> mark(X) r8: a__tail(cons(X,L)) -> mark(L) r9: mark(incr(X)) -> a__incr(mark(X)) r10: mark(adx(X)) -> a__adx(mark(X)) r11: mark(nats()) -> a__nats() r12: mark(zeros()) -> a__zeros() r13: mark(head(X)) -> a__head(mark(X)) r14: mark(tail(X)) -> a__tail(mark(X)) r15: mark(nil()) -> nil() r16: mark(cons(X1,X2)) -> cons(mark(X1),X2) r17: mark(s(X)) -> s(mark(X)) r18: mark(|0|()) -> |0|() r19: a__incr(X) -> incr(X) r20: a__adx(X) -> adx(X) r21: a__nats() -> nats() r22: a__zeros() -> zeros() r23: a__head(X) -> head(X) r24: a__tail(X) -> tail(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p6, p7, p8, p9, p10, p11, p12, p14, p15, p16, p17, p18, p19} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__incr#(cons(X,L)) -> mark#(X) p2: mark#(s(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(tail(X)) -> mark#(X) p5: mark#(tail(X)) -> a__tail#(mark(X)) p6: a__tail#(cons(X,L)) -> mark#(L) p7: mark#(head(X)) -> mark#(X) p8: mark#(head(X)) -> a__head#(mark(X)) p9: a__head#(cons(X,L)) -> mark#(X) p10: mark#(nats()) -> a__nats#() p11: a__nats#() -> a__adx#(a__zeros()) p12: a__adx#(cons(X,L)) -> mark#(X) p13: mark#(adx(X)) -> mark#(X) p14: mark#(adx(X)) -> a__adx#(mark(X)) p15: a__adx#(cons(X,L)) -> a__incr#(cons(mark(X),adx(L))) p16: mark#(incr(X)) -> mark#(X) p17: mark#(incr(X)) -> a__incr#(mark(X)) and R consists of: r1: a__incr(nil()) -> nil() r2: a__incr(cons(X,L)) -> cons(s(mark(X)),incr(L)) r3: a__adx(nil()) -> nil() r4: a__adx(cons(X,L)) -> a__incr(cons(mark(X),adx(L))) r5: a__nats() -> a__adx(a__zeros()) r6: a__zeros() -> cons(|0|(),zeros()) r7: a__head(cons(X,L)) -> mark(X) r8: a__tail(cons(X,L)) -> mark(L) r9: mark(incr(X)) -> a__incr(mark(X)) r10: mark(adx(X)) -> a__adx(mark(X)) r11: mark(nats()) -> a__nats() r12: mark(zeros()) -> a__zeros() r13: mark(head(X)) -> a__head(mark(X)) r14: mark(tail(X)) -> a__tail(mark(X)) r15: mark(nil()) -> nil() r16: mark(cons(X1,X2)) -> cons(mark(X1),X2) r17: mark(s(X)) -> s(mark(X)) r18: mark(|0|()) -> |0|() r19: a__incr(X) -> incr(X) r20: a__adx(X) -> adx(X) r21: a__nats() -> nats() r22: a__zeros() -> zeros() r23: a__head(X) -> head(X) r24: a__tail(X) -> tail(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__incr#_A(x1) = ((1,0),(0,0)) x1 + (2,4) cons_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (0,3) mark#_A(x1) = ((1,0),(0,0)) x1 + (2,4) s_A(x1) = ((1,0),(0,0)) x1 + (0,2) tail_A(x1) = ((1,0),(0,0)) x1 + (4,1) a__tail#_A(x1) = ((1,0),(0,0)) x1 + (3,2) mark_A(x1) = ((1,0),(0,0)) x1 + (0,3) head_A(x1) = ((1,0),(0,0)) x1 + (4,1) a__head#_A(x1) = ((1,0),(0,0)) x1 + (3,5) nats_A() = (4,1) a__nats#_A() = (3,4) a__adx#_A(x1) = x1 + (3,1) a__zeros_A() = (0,3) adx_A(x1) = ((1,0),(0,0)) x1 + (1,2) incr_A(x1) = ((1,0),(0,0)) x1 + (0,1) a__incr_A(x1) = ((1,0),(0,0)) x1 + (0,3) nil_A() = (0,1) a__adx_A(x1) = ((1,0),(0,0)) x1 + (1,3) a__nats_A() = (4,2) a__head_A(x1) = ((1,0),(0,0)) x1 + (4,3) a__tail_A(x1) = ((1,0),(0,0)) x1 + (4,2) |0|_A() = (0,1) zeros_A() = (0,1) precedence: a__incr# = mark# = tail = a__tail# = a__head# = a__nats# = a__adx# > cons = mark = head = nats = a__zeros = adx = a__incr = nil = a__adx = a__nats = a__head = a__tail = |0| = zeros > s = incr partial status: pi(a__incr#) = [] pi(cons) = [] pi(mark#) = [] pi(s) = [] pi(tail) = [] pi(a__tail#) = [] pi(mark) = [] pi(head) = [] pi(a__head#) = [] pi(nats) = [] pi(a__nats#) = [] pi(a__adx#) = [] pi(a__zeros) = [] pi(adx) = [] pi(incr) = [] pi(a__incr) = [] pi(nil) = [] pi(a__adx) = [] pi(a__nats) = [] pi(a__head) = [] pi(a__tail) = [] pi(|0|) = [] pi(zeros) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__incr#(cons(X,L)) -> mark#(X) p2: mark#(s(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(tail(X)) -> mark#(X) p5: a__tail#(cons(X,L)) -> mark#(L) p6: mark#(head(X)) -> mark#(X) p7: mark#(head(X)) -> a__head#(mark(X)) p8: a__head#(cons(X,L)) -> mark#(X) p9: mark#(nats()) -> a__nats#() p10: a__nats#() -> a__adx#(a__zeros()) p11: a__adx#(cons(X,L)) -> mark#(X) p12: mark#(adx(X)) -> mark#(X) p13: mark#(adx(X)) -> a__adx#(mark(X)) p14: a__adx#(cons(X,L)) -> a__incr#(cons(mark(X),adx(L))) p15: mark#(incr(X)) -> mark#(X) p16: mark#(incr(X)) -> a__incr#(mark(X)) and R consists of: r1: a__incr(nil()) -> nil() r2: a__incr(cons(X,L)) -> cons(s(mark(X)),incr(L)) r3: a__adx(nil()) -> nil() r4: a__adx(cons(X,L)) -> a__incr(cons(mark(X),adx(L))) r5: a__nats() -> a__adx(a__zeros()) r6: a__zeros() -> cons(|0|(),zeros()) r7: a__head(cons(X,L)) -> mark(X) r8: a__tail(cons(X,L)) -> mark(L) r9: mark(incr(X)) -> a__incr(mark(X)) r10: mark(adx(X)) -> a__adx(mark(X)) r11: mark(nats()) -> a__nats() r12: mark(zeros()) -> a__zeros() r13: mark(head(X)) -> a__head(mark(X)) r14: mark(tail(X)) -> a__tail(mark(X)) r15: mark(nil()) -> nil() r16: mark(cons(X1,X2)) -> cons(mark(X1),X2) r17: mark(s(X)) -> s(mark(X)) r18: mark(|0|()) -> |0|() r19: a__incr(X) -> incr(X) r20: a__adx(X) -> adx(X) r21: a__nats() -> nats() r22: a__zeros() -> zeros() r23: a__head(X) -> head(X) r24: a__tail(X) -> tail(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__incr#(cons(X,L)) -> mark#(X) p2: mark#(incr(X)) -> a__incr#(mark(X)) p3: mark#(incr(X)) -> mark#(X) p4: mark#(adx(X)) -> a__adx#(mark(X)) p5: a__adx#(cons(X,L)) -> a__incr#(cons(mark(X),adx(L))) p6: a__adx#(cons(X,L)) -> mark#(X) p7: mark#(adx(X)) -> mark#(X) p8: mark#(nats()) -> a__nats#() p9: a__nats#() -> a__adx#(a__zeros()) p10: mark#(head(X)) -> a__head#(mark(X)) p11: a__head#(cons(X,L)) -> mark#(X) p12: mark#(head(X)) -> mark#(X) p13: mark#(tail(X)) -> mark#(X) p14: mark#(cons(X1,X2)) -> mark#(X1) p15: mark#(s(X)) -> mark#(X) and R consists of: r1: a__incr(nil()) -> nil() r2: a__incr(cons(X,L)) -> cons(s(mark(X)),incr(L)) r3: a__adx(nil()) -> nil() r4: a__adx(cons(X,L)) -> a__incr(cons(mark(X),adx(L))) r5: a__nats() -> a__adx(a__zeros()) r6: a__zeros() -> cons(|0|(),zeros()) r7: a__head(cons(X,L)) -> mark(X) r8: a__tail(cons(X,L)) -> mark(L) r9: mark(incr(X)) -> a__incr(mark(X)) r10: mark(adx(X)) -> a__adx(mark(X)) r11: mark(nats()) -> a__nats() r12: mark(zeros()) -> a__zeros() r13: mark(head(X)) -> a__head(mark(X)) r14: mark(tail(X)) -> a__tail(mark(X)) r15: mark(nil()) -> nil() r16: mark(cons(X1,X2)) -> cons(mark(X1),X2) r17: mark(s(X)) -> s(mark(X)) r18: mark(|0|()) -> |0|() r19: a__incr(X) -> incr(X) r20: a__adx(X) -> adx(X) r21: a__nats() -> nats() r22: a__zeros() -> zeros() r23: a__head(X) -> head(X) r24: a__tail(X) -> tail(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__incr#_A(x1) = ((0,0),(1,0)) x1 + (2,4) cons_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 mark#_A(x1) = ((0,0),(1,0)) x1 + (2,4) incr_A(x1) = ((1,0),(0,0)) x1 + (0,5) mark_A(x1) = ((1,0),(1,1)) x1 + (0,9) adx_A(x1) = ((1,0),(0,0)) x1 + (1,6) a__adx#_A(x1) = ((0,0),(1,0)) x1 + (2,5) nats_A() = (3,5) a__nats#_A() = (2,6) a__zeros_A() = (1,4) head_A(x1) = x1 + (0,10) a__head#_A(x1) = ((0,0),(1,0)) x1 + (2,4) tail_A(x1) = x1 + (1,8) s_A(x1) = ((1,0),(0,0)) x1 a__incr_A(x1) = ((1,0),(1,0)) x1 + (0,6) nil_A() = (1,1) a__adx_A(x1) = ((1,0),(1,0)) x1 + (1,8) a__nats_A() = (3,5) a__head_A(x1) = x1 + (0,10) a__tail_A(x1) = x1 + (1,9) |0|_A() = (0,1) zeros_A() = (1,1) precedence: nil > mark = nats = tail = a__nats = a__head = a__tail > a__incr# = mark# = a__adx# = a__nats# = head = a__head# > a__zeros > zeros > a__adx > cons = a__incr > incr > s > adx = |0| partial status: pi(a__incr#) = [] pi(cons) = [] pi(mark#) = [] pi(incr) = [] pi(mark) = [] pi(adx) = [] pi(a__adx#) = [] pi(nats) = [] pi(a__nats#) = [] pi(a__zeros) = [] pi(head) = [1] pi(a__head#) = [] pi(tail) = [] pi(s) = [] pi(a__incr) = [] pi(nil) = [] pi(a__adx) = [] pi(a__nats) = [] pi(a__head) = [] pi(a__tail) = [] pi(|0|) = [] pi(zeros) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__incr#(cons(X,L)) -> mark#(X) p2: mark#(incr(X)) -> a__incr#(mark(X)) p3: mark#(incr(X)) -> mark#(X) p4: mark#(adx(X)) -> a__adx#(mark(X)) p5: a__adx#(cons(X,L)) -> a__incr#(cons(mark(X),adx(L))) p6: mark#(adx(X)) -> mark#(X) p7: mark#(nats()) -> a__nats#() p8: a__nats#() -> a__adx#(a__zeros()) p9: mark#(head(X)) -> a__head#(mark(X)) p10: a__head#(cons(X,L)) -> mark#(X) p11: mark#(head(X)) -> mark#(X) p12: mark#(tail(X)) -> mark#(X) p13: mark#(cons(X1,X2)) -> mark#(X1) p14: mark#(s(X)) -> mark#(X) and R consists of: r1: a__incr(nil()) -> nil() r2: a__incr(cons(X,L)) -> cons(s(mark(X)),incr(L)) r3: a__adx(nil()) -> nil() r4: a__adx(cons(X,L)) -> a__incr(cons(mark(X),adx(L))) r5: a__nats() -> a__adx(a__zeros()) r6: a__zeros() -> cons(|0|(),zeros()) r7: a__head(cons(X,L)) -> mark(X) r8: a__tail(cons(X,L)) -> mark(L) r9: mark(incr(X)) -> a__incr(mark(X)) r10: mark(adx(X)) -> a__adx(mark(X)) r11: mark(nats()) -> a__nats() r12: mark(zeros()) -> a__zeros() r13: mark(head(X)) -> a__head(mark(X)) r14: mark(tail(X)) -> a__tail(mark(X)) r15: mark(nil()) -> nil() r16: mark(cons(X1,X2)) -> cons(mark(X1),X2) r17: mark(s(X)) -> s(mark(X)) r18: mark(|0|()) -> |0|() r19: a__incr(X) -> incr(X) r20: a__adx(X) -> adx(X) r21: a__nats() -> nats() r22: a__zeros() -> zeros() r23: a__head(X) -> head(X) r24: a__tail(X) -> tail(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__incr#(cons(X,L)) -> mark#(X) p2: mark#(s(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(tail(X)) -> mark#(X) p5: mark#(head(X)) -> mark#(X) p6: mark#(head(X)) -> a__head#(mark(X)) p7: a__head#(cons(X,L)) -> mark#(X) p8: mark#(nats()) -> a__nats#() p9: a__nats#() -> a__adx#(a__zeros()) p10: a__adx#(cons(X,L)) -> a__incr#(cons(mark(X),adx(L))) p11: mark#(adx(X)) -> mark#(X) p12: mark#(adx(X)) -> a__adx#(mark(X)) p13: mark#(incr(X)) -> mark#(X) p14: mark#(incr(X)) -> a__incr#(mark(X)) and R consists of: r1: a__incr(nil()) -> nil() r2: a__incr(cons(X,L)) -> cons(s(mark(X)),incr(L)) r3: a__adx(nil()) -> nil() r4: a__adx(cons(X,L)) -> a__incr(cons(mark(X),adx(L))) r5: a__nats() -> a__adx(a__zeros()) r6: a__zeros() -> cons(|0|(),zeros()) r7: a__head(cons(X,L)) -> mark(X) r8: a__tail(cons(X,L)) -> mark(L) r9: mark(incr(X)) -> a__incr(mark(X)) r10: mark(adx(X)) -> a__adx(mark(X)) r11: mark(nats()) -> a__nats() r12: mark(zeros()) -> a__zeros() r13: mark(head(X)) -> a__head(mark(X)) r14: mark(tail(X)) -> a__tail(mark(X)) r15: mark(nil()) -> nil() r16: mark(cons(X1,X2)) -> cons(mark(X1),X2) r17: mark(s(X)) -> s(mark(X)) r18: mark(|0|()) -> |0|() r19: a__incr(X) -> incr(X) r20: a__adx(X) -> adx(X) r21: a__nats() -> nats() r22: a__zeros() -> zeros() r23: a__head(X) -> head(X) r24: a__tail(X) -> tail(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__incr#_A(x1) = ((0,0),(1,0)) x1 + (1,2) cons_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (0,3) mark#_A(x1) = ((0,0),(1,0)) x1 + (1,2) s_A(x1) = ((1,0),(0,0)) x1 tail_A(x1) = ((1,0),(0,0)) x1 + (2,1) head_A(x1) = ((1,0),(0,0)) x1 + (4,1) a__head#_A(x1) = ((0,0),(1,0)) x1 + (1,3) mark_A(x1) = x1 + (0,5) nats_A() = (0,8) a__nats#_A() = (1,2) a__adx#_A(x1) = ((0,0),(1,0)) x1 + (1,2) a__zeros_A() = (0,4) adx_A(x1) = ((1,0),(0,0)) x1 + (0,6) incr_A(x1) = ((1,0),(0,0)) x1 + (0,4) a__incr_A(x1) = ((1,0),(0,0)) x1 + (0,4) nil_A() = (1,3) a__adx_A(x1) = ((1,0),(0,0)) x1 + (0,11) a__nats_A() = (0,12) a__head_A(x1) = ((1,0),(0,0)) x1 + (4,2) a__tail_A(x1) = ((1,0),(0,0)) x1 + (2,5) |0|_A() = (0,0) zeros_A() = (0,3) precedence: a__head = a__tail > head = a__nats > incr = a__incr > mark = a__zeros > tail > nats > a__incr# = cons = mark# = s = a__head# = a__nats# = a__adx# = adx = nil = a__adx = |0| = zeros partial status: pi(a__incr#) = [] pi(cons) = [] pi(mark#) = [] pi(s) = [] pi(tail) = [] pi(head) = [] pi(a__head#) = [] pi(mark) = [1] pi(nats) = [] pi(a__nats#) = [] pi(a__adx#) = [] pi(a__zeros) = [] pi(adx) = [] pi(incr) = [] pi(a__incr) = [] pi(nil) = [] pi(a__adx) = [] pi(a__nats) = [] pi(a__head) = [] pi(a__tail) = [] pi(|0|) = [] pi(zeros) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__incr#(cons(X,L)) -> mark#(X) p2: mark#(s(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(tail(X)) -> mark#(X) p5: mark#(head(X)) -> mark#(X) p6: mark#(head(X)) -> a__head#(mark(X)) p7: mark#(nats()) -> a__nats#() p8: a__nats#() -> a__adx#(a__zeros()) p9: a__adx#(cons(X,L)) -> a__incr#(cons(mark(X),adx(L))) p10: mark#(adx(X)) -> mark#(X) p11: mark#(adx(X)) -> a__adx#(mark(X)) p12: mark#(incr(X)) -> mark#(X) p13: mark#(incr(X)) -> a__incr#(mark(X)) and R consists of: r1: a__incr(nil()) -> nil() r2: a__incr(cons(X,L)) -> cons(s(mark(X)),incr(L)) r3: a__adx(nil()) -> nil() r4: a__adx(cons(X,L)) -> a__incr(cons(mark(X),adx(L))) r5: a__nats() -> a__adx(a__zeros()) r6: a__zeros() -> cons(|0|(),zeros()) r7: a__head(cons(X,L)) -> mark(X) r8: a__tail(cons(X,L)) -> mark(L) r9: mark(incr(X)) -> a__incr(mark(X)) r10: mark(adx(X)) -> a__adx(mark(X)) r11: mark(nats()) -> a__nats() r12: mark(zeros()) -> a__zeros() r13: mark(head(X)) -> a__head(mark(X)) r14: mark(tail(X)) -> a__tail(mark(X)) r15: mark(nil()) -> nil() r16: mark(cons(X1,X2)) -> cons(mark(X1),X2) r17: mark(s(X)) -> s(mark(X)) r18: mark(|0|()) -> |0|() r19: a__incr(X) -> incr(X) r20: a__adx(X) -> adx(X) r21: a__nats() -> nats() r22: a__zeros() -> zeros() r23: a__head(X) -> head(X) r24: a__tail(X) -> tail(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p7, p8, p9, p10, p11, p12, p13} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__incr#(cons(X,L)) -> mark#(X) p2: mark#(incr(X)) -> a__incr#(mark(X)) p3: mark#(incr(X)) -> mark#(X) p4: mark#(adx(X)) -> a__adx#(mark(X)) p5: a__adx#(cons(X,L)) -> a__incr#(cons(mark(X),adx(L))) p6: mark#(adx(X)) -> mark#(X) p7: mark#(nats()) -> a__nats#() p8: a__nats#() -> a__adx#(a__zeros()) p9: mark#(head(X)) -> mark#(X) p10: mark#(tail(X)) -> mark#(X) p11: mark#(cons(X1,X2)) -> mark#(X1) p12: mark#(s(X)) -> mark#(X) and R consists of: r1: a__incr(nil()) -> nil() r2: a__incr(cons(X,L)) -> cons(s(mark(X)),incr(L)) r3: a__adx(nil()) -> nil() r4: a__adx(cons(X,L)) -> a__incr(cons(mark(X),adx(L))) r5: a__nats() -> a__adx(a__zeros()) r6: a__zeros() -> cons(|0|(),zeros()) r7: a__head(cons(X,L)) -> mark(X) r8: a__tail(cons(X,L)) -> mark(L) r9: mark(incr(X)) -> a__incr(mark(X)) r10: mark(adx(X)) -> a__adx(mark(X)) r11: mark(nats()) -> a__nats() r12: mark(zeros()) -> a__zeros() r13: mark(head(X)) -> a__head(mark(X)) r14: mark(tail(X)) -> a__tail(mark(X)) r15: mark(nil()) -> nil() r16: mark(cons(X1,X2)) -> cons(mark(X1),X2) r17: mark(s(X)) -> s(mark(X)) r18: mark(|0|()) -> |0|() r19: a__incr(X) -> incr(X) r20: a__adx(X) -> adx(X) r21: a__nats() -> nats() r22: a__zeros() -> zeros() r23: a__head(X) -> head(X) r24: a__tail(X) -> tail(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__incr#_A(x1) = x1 + (0,1) cons_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(0,0)) x2 + (0,8) mark#_A(x1) = ((1,0),(1,1)) x1 + (0,5) incr_A(x1) = x1 + (0,9) mark_A(x1) = x1 + (0,3) adx_A(x1) = ((1,0),(1,1)) x1 + (1,14) a__adx#_A(x1) = x1 + (1,5) nats_A() = (4,24) a__nats#_A() = (3,25) a__zeros_A() = (1,10) head_A(x1) = ((1,0),(0,0)) x1 + (1,1) tail_A(x1) = ((1,0),(1,1)) x1 + (1,1) s_A(x1) = x1 + (0,4) a__incr_A(x1) = x1 + (0,9) nil_A() = (1,1) a__adx_A(x1) = ((1,0),(1,1)) x1 + (1,14) a__nats_A() = (4,26) a__head_A(x1) = ((1,0),(0,0)) x1 + (1,2) a__tail_A(x1) = ((1,0),(1,1)) x1 + (1,1) |0|_A() = (0,1) zeros_A() = (1,10) precedence: a__zeros = zeros > a__incr# = mark# = mark = adx = a__adx# = a__nats# = s = a__adx > tail = a__tail > head = a__head > nats > a__nats > cons = incr = a__incr = |0| > nil partial status: pi(a__incr#) = [1] pi(cons) = [] pi(mark#) = [1] pi(incr) = [] pi(mark) = [1] pi(adx) = [] pi(a__adx#) = [] pi(nats) = [] pi(a__nats#) = [] pi(a__zeros) = [] pi(head) = [] pi(tail) = [] pi(s) = [1] pi(a__incr) = [] pi(nil) = [] pi(a__adx) = [] pi(a__nats) = [] pi(a__head) = [] pi(a__tail) = [] pi(|0|) = [] pi(zeros) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(incr(X)) -> a__incr#(mark(X)) p2: mark#(incr(X)) -> mark#(X) p3: mark#(adx(X)) -> a__adx#(mark(X)) p4: a__adx#(cons(X,L)) -> a__incr#(cons(mark(X),adx(L))) p5: mark#(adx(X)) -> mark#(X) p6: mark#(nats()) -> a__nats#() p7: a__nats#() -> a__adx#(a__zeros()) p8: mark#(head(X)) -> mark#(X) p9: mark#(tail(X)) -> mark#(X) p10: mark#(cons(X1,X2)) -> mark#(X1) p11: mark#(s(X)) -> mark#(X) and R consists of: r1: a__incr(nil()) -> nil() r2: a__incr(cons(X,L)) -> cons(s(mark(X)),incr(L)) r3: a__adx(nil()) -> nil() r4: a__adx(cons(X,L)) -> a__incr(cons(mark(X),adx(L))) r5: a__nats() -> a__adx(a__zeros()) r6: a__zeros() -> cons(|0|(),zeros()) r7: a__head(cons(X,L)) -> mark(X) r8: a__tail(cons(X,L)) -> mark(L) r9: mark(incr(X)) -> a__incr(mark(X)) r10: mark(adx(X)) -> a__adx(mark(X)) r11: mark(nats()) -> a__nats() r12: mark(zeros()) -> a__zeros() r13: mark(head(X)) -> a__head(mark(X)) r14: mark(tail(X)) -> a__tail(mark(X)) r15: mark(nil()) -> nil() r16: mark(cons(X1,X2)) -> cons(mark(X1),X2) r17: mark(s(X)) -> s(mark(X)) r18: mark(|0|()) -> |0|() r19: a__incr(X) -> incr(X) r20: a__adx(X) -> adx(X) r21: a__nats() -> nats() r22: a__zeros() -> zeros() r23: a__head(X) -> head(X) r24: a__tail(X) -> tail(X) The estimated dependency graph contains the following SCCs: {p2, p5, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(incr(X)) -> mark#(X) p2: mark#(s(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(tail(X)) -> mark#(X) p5: mark#(head(X)) -> mark#(X) p6: mark#(adx(X)) -> mark#(X) and R consists of: r1: a__incr(nil()) -> nil() r2: a__incr(cons(X,L)) -> cons(s(mark(X)),incr(L)) r3: a__adx(nil()) -> nil() r4: a__adx(cons(X,L)) -> a__incr(cons(mark(X),adx(L))) r5: a__nats() -> a__adx(a__zeros()) r6: a__zeros() -> cons(|0|(),zeros()) r7: a__head(cons(X,L)) -> mark(X) r8: a__tail(cons(X,L)) -> mark(L) r9: mark(incr(X)) -> a__incr(mark(X)) r10: mark(adx(X)) -> a__adx(mark(X)) r11: mark(nats()) -> a__nats() r12: mark(zeros()) -> a__zeros() r13: mark(head(X)) -> a__head(mark(X)) r14: mark(tail(X)) -> a__tail(mark(X)) r15: mark(nil()) -> nil() r16: mark(cons(X1,X2)) -> cons(mark(X1),X2) r17: mark(s(X)) -> s(mark(X)) r18: mark(|0|()) -> |0|() r19: a__incr(X) -> incr(X) r20: a__adx(X) -> adx(X) r21: a__nats() -> nats() r22: a__zeros() -> zeros() r23: a__head(X) -> head(X) r24: a__tail(X) -> tail(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = ((1,0),(0,0)) x1 + (2,1) incr_A(x1) = x1 + (3,2) s_A(x1) = ((1,0),(0,0)) x1 + (3,2) cons_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (3,2) tail_A(x1) = ((1,0),(0,0)) x1 + (1,2) head_A(x1) = ((1,0),(1,1)) x1 + (3,2) adx_A(x1) = ((1,0),(0,0)) x1 + (3,2) precedence: mark# = s = cons > adx > incr > head > tail partial status: pi(mark#) = [] pi(incr) = [] pi(s) = [] pi(cons) = [] pi(tail) = [] pi(head) = [] pi(adx) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(incr(X)) -> mark#(X) p2: mark#(s(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(head(X)) -> mark#(X) p5: mark#(adx(X)) -> mark#(X) and R consists of: r1: a__incr(nil()) -> nil() r2: a__incr(cons(X,L)) -> cons(s(mark(X)),incr(L)) r3: a__adx(nil()) -> nil() r4: a__adx(cons(X,L)) -> a__incr(cons(mark(X),adx(L))) r5: a__nats() -> a__adx(a__zeros()) r6: a__zeros() -> cons(|0|(),zeros()) r7: a__head(cons(X,L)) -> mark(X) r8: a__tail(cons(X,L)) -> mark(L) r9: mark(incr(X)) -> a__incr(mark(X)) r10: mark(adx(X)) -> a__adx(mark(X)) r11: mark(nats()) -> a__nats() r12: mark(zeros()) -> a__zeros() r13: mark(head(X)) -> a__head(mark(X)) r14: mark(tail(X)) -> a__tail(mark(X)) r15: mark(nil()) -> nil() r16: mark(cons(X1,X2)) -> cons(mark(X1),X2) r17: mark(s(X)) -> s(mark(X)) r18: mark(|0|()) -> |0|() r19: a__incr(X) -> incr(X) r20: a__adx(X) -> adx(X) r21: a__nats() -> nats() r22: a__zeros() -> zeros() r23: a__head(X) -> head(X) r24: a__tail(X) -> tail(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(incr(X)) -> mark#(X) p2: mark#(adx(X)) -> mark#(X) p3: mark#(head(X)) -> mark#(X) p4: mark#(cons(X1,X2)) -> mark#(X1) p5: mark#(s(X)) -> mark#(X) and R consists of: r1: a__incr(nil()) -> nil() r2: a__incr(cons(X,L)) -> cons(s(mark(X)),incr(L)) r3: a__adx(nil()) -> nil() r4: a__adx(cons(X,L)) -> a__incr(cons(mark(X),adx(L))) r5: a__nats() -> a__adx(a__zeros()) r6: a__zeros() -> cons(|0|(),zeros()) r7: a__head(cons(X,L)) -> mark(X) r8: a__tail(cons(X,L)) -> mark(L) r9: mark(incr(X)) -> a__incr(mark(X)) r10: mark(adx(X)) -> a__adx(mark(X)) r11: mark(nats()) -> a__nats() r12: mark(zeros()) -> a__zeros() r13: mark(head(X)) -> a__head(mark(X)) r14: mark(tail(X)) -> a__tail(mark(X)) r15: mark(nil()) -> nil() r16: mark(cons(X1,X2)) -> cons(mark(X1),X2) r17: mark(s(X)) -> s(mark(X)) r18: mark(|0|()) -> |0|() r19: a__incr(X) -> incr(X) r20: a__adx(X) -> adx(X) r21: a__nats() -> nats() r22: a__zeros() -> zeros() r23: a__head(X) -> head(X) r24: a__tail(X) -> tail(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = ((1,0),(1,1)) x1 + (1,2) incr_A(x1) = x1 + (2,1) adx_A(x1) = ((1,0),(1,1)) x1 + (2,3) head_A(x1) = x1 + (2,3) cons_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (2,3) s_A(x1) = x1 + (2,1) precedence: adx > head > mark# = cons > s > incr partial status: pi(mark#) = [1] pi(incr) = [1] pi(adx) = [1] pi(head) = [] pi(cons) = [1, 2] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(adx(X)) -> mark#(X) p2: mark#(head(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(s(X)) -> mark#(X) and R consists of: r1: a__incr(nil()) -> nil() r2: a__incr(cons(X,L)) -> cons(s(mark(X)),incr(L)) r3: a__adx(nil()) -> nil() r4: a__adx(cons(X,L)) -> a__incr(cons(mark(X),adx(L))) r5: a__nats() -> a__adx(a__zeros()) r6: a__zeros() -> cons(|0|(),zeros()) r7: a__head(cons(X,L)) -> mark(X) r8: a__tail(cons(X,L)) -> mark(L) r9: mark(incr(X)) -> a__incr(mark(X)) r10: mark(adx(X)) -> a__adx(mark(X)) r11: mark(nats()) -> a__nats() r12: mark(zeros()) -> a__zeros() r13: mark(head(X)) -> a__head(mark(X)) r14: mark(tail(X)) -> a__tail(mark(X)) r15: mark(nil()) -> nil() r16: mark(cons(X1,X2)) -> cons(mark(X1),X2) r17: mark(s(X)) -> s(mark(X)) r18: mark(|0|()) -> |0|() r19: a__incr(X) -> incr(X) r20: a__adx(X) -> adx(X) r21: a__nats() -> nats() r22: a__zeros() -> zeros() r23: a__head(X) -> head(X) r24: a__tail(X) -> tail(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(adx(X)) -> mark#(X) p2: mark#(s(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(head(X)) -> mark#(X) and R consists of: r1: a__incr(nil()) -> nil() r2: a__incr(cons(X,L)) -> cons(s(mark(X)),incr(L)) r3: a__adx(nil()) -> nil() r4: a__adx(cons(X,L)) -> a__incr(cons(mark(X),adx(L))) r5: a__nats() -> a__adx(a__zeros()) r6: a__zeros() -> cons(|0|(),zeros()) r7: a__head(cons(X,L)) -> mark(X) r8: a__tail(cons(X,L)) -> mark(L) r9: mark(incr(X)) -> a__incr(mark(X)) r10: mark(adx(X)) -> a__adx(mark(X)) r11: mark(nats()) -> a__nats() r12: mark(zeros()) -> a__zeros() r13: mark(head(X)) -> a__head(mark(X)) r14: mark(tail(X)) -> a__tail(mark(X)) r15: mark(nil()) -> nil() r16: mark(cons(X1,X2)) -> cons(mark(X1),X2) r17: mark(s(X)) -> s(mark(X)) r18: mark(|0|()) -> |0|() r19: a__incr(X) -> incr(X) r20: a__adx(X) -> adx(X) r21: a__nats() -> nats() r22: a__zeros() -> zeros() r23: a__head(X) -> head(X) r24: a__tail(X) -> tail(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = x1 adx_A(x1) = ((1,0),(1,1)) x1 + (1,1) s_A(x1) = x1 + (1,1) cons_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (1,1) head_A(x1) = x1 + (1,1) precedence: adx > mark# = s = cons = head partial status: pi(mark#) = [1] pi(adx) = [1] pi(s) = [1] pi(cons) = [1, 2] pi(head) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(adx(X)) -> mark#(X) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(head(X)) -> mark#(X) and R consists of: r1: a__incr(nil()) -> nil() r2: a__incr(cons(X,L)) -> cons(s(mark(X)),incr(L)) r3: a__adx(nil()) -> nil() r4: a__adx(cons(X,L)) -> a__incr(cons(mark(X),adx(L))) r5: a__nats() -> a__adx(a__zeros()) r6: a__zeros() -> cons(|0|(),zeros()) r7: a__head(cons(X,L)) -> mark(X) r8: a__tail(cons(X,L)) -> mark(L) r9: mark(incr(X)) -> a__incr(mark(X)) r10: mark(adx(X)) -> a__adx(mark(X)) r11: mark(nats()) -> a__nats() r12: mark(zeros()) -> a__zeros() r13: mark(head(X)) -> a__head(mark(X)) r14: mark(tail(X)) -> a__tail(mark(X)) r15: mark(nil()) -> nil() r16: mark(cons(X1,X2)) -> cons(mark(X1),X2) r17: mark(s(X)) -> s(mark(X)) r18: mark(|0|()) -> |0|() r19: a__incr(X) -> incr(X) r20: a__adx(X) -> adx(X) r21: a__nats() -> nats() r22: a__zeros() -> zeros() r23: a__head(X) -> head(X) r24: a__tail(X) -> tail(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(adx(X)) -> mark#(X) p2: mark#(head(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__incr(nil()) -> nil() r2: a__incr(cons(X,L)) -> cons(s(mark(X)),incr(L)) r3: a__adx(nil()) -> nil() r4: a__adx(cons(X,L)) -> a__incr(cons(mark(X),adx(L))) r5: a__nats() -> a__adx(a__zeros()) r6: a__zeros() -> cons(|0|(),zeros()) r7: a__head(cons(X,L)) -> mark(X) r8: a__tail(cons(X,L)) -> mark(L) r9: mark(incr(X)) -> a__incr(mark(X)) r10: mark(adx(X)) -> a__adx(mark(X)) r11: mark(nats()) -> a__nats() r12: mark(zeros()) -> a__zeros() r13: mark(head(X)) -> a__head(mark(X)) r14: mark(tail(X)) -> a__tail(mark(X)) r15: mark(nil()) -> nil() r16: mark(cons(X1,X2)) -> cons(mark(X1),X2) r17: mark(s(X)) -> s(mark(X)) r18: mark(|0|()) -> |0|() r19: a__incr(X) -> incr(X) r20: a__adx(X) -> adx(X) r21: a__nats() -> nats() r22: a__zeros() -> zeros() r23: a__head(X) -> head(X) r24: a__tail(X) -> tail(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = x1 + (1,2) adx_A(x1) = ((1,0),(1,1)) x1 + (2,3) head_A(x1) = x1 + (2,1) cons_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (2,3) precedence: adx = head > mark# = cons partial status: pi(mark#) = [1] pi(adx) = [1] pi(head) = [1] pi(cons) = [2] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(adx(X)) -> mark#(X) p2: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__incr(nil()) -> nil() r2: a__incr(cons(X,L)) -> cons(s(mark(X)),incr(L)) r3: a__adx(nil()) -> nil() r4: a__adx(cons(X,L)) -> a__incr(cons(mark(X),adx(L))) r5: a__nats() -> a__adx(a__zeros()) r6: a__zeros() -> cons(|0|(),zeros()) r7: a__head(cons(X,L)) -> mark(X) r8: a__tail(cons(X,L)) -> mark(L) r9: mark(incr(X)) -> a__incr(mark(X)) r10: mark(adx(X)) -> a__adx(mark(X)) r11: mark(nats()) -> a__nats() r12: mark(zeros()) -> a__zeros() r13: mark(head(X)) -> a__head(mark(X)) r14: mark(tail(X)) -> a__tail(mark(X)) r15: mark(nil()) -> nil() r16: mark(cons(X1,X2)) -> cons(mark(X1),X2) r17: mark(s(X)) -> s(mark(X)) r18: mark(|0|()) -> |0|() r19: a__incr(X) -> incr(X) r20: a__adx(X) -> adx(X) r21: a__nats() -> nats() r22: a__zeros() -> zeros() r23: a__head(X) -> head(X) r24: a__tail(X) -> tail(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(adx(X)) -> mark#(X) p2: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__incr(nil()) -> nil() r2: a__incr(cons(X,L)) -> cons(s(mark(X)),incr(L)) r3: a__adx(nil()) -> nil() r4: a__adx(cons(X,L)) -> a__incr(cons(mark(X),adx(L))) r5: a__nats() -> a__adx(a__zeros()) r6: a__zeros() -> cons(|0|(),zeros()) r7: a__head(cons(X,L)) -> mark(X) r8: a__tail(cons(X,L)) -> mark(L) r9: mark(incr(X)) -> a__incr(mark(X)) r10: mark(adx(X)) -> a__adx(mark(X)) r11: mark(nats()) -> a__nats() r12: mark(zeros()) -> a__zeros() r13: mark(head(X)) -> a__head(mark(X)) r14: mark(tail(X)) -> a__tail(mark(X)) r15: mark(nil()) -> nil() r16: mark(cons(X1,X2)) -> cons(mark(X1),X2) r17: mark(s(X)) -> s(mark(X)) r18: mark(|0|()) -> |0|() r19: a__incr(X) -> incr(X) r20: a__adx(X) -> adx(X) r21: a__nats() -> nats() r22: a__zeros() -> zeros() r23: a__head(X) -> head(X) r24: a__tail(X) -> tail(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = ((1,0),(1,0)) x1 + (1,2) adx_A(x1) = ((1,0),(0,0)) x1 + (2,1) cons_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (2,1) precedence: mark# = adx = cons partial status: pi(mark#) = [] pi(adx) = [] pi(cons) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__incr(nil()) -> nil() r2: a__incr(cons(X,L)) -> cons(s(mark(X)),incr(L)) r3: a__adx(nil()) -> nil() r4: a__adx(cons(X,L)) -> a__incr(cons(mark(X),adx(L))) r5: a__nats() -> a__adx(a__zeros()) r6: a__zeros() -> cons(|0|(),zeros()) r7: a__head(cons(X,L)) -> mark(X) r8: a__tail(cons(X,L)) -> mark(L) r9: mark(incr(X)) -> a__incr(mark(X)) r10: mark(adx(X)) -> a__adx(mark(X)) r11: mark(nats()) -> a__nats() r12: mark(zeros()) -> a__zeros() r13: mark(head(X)) -> a__head(mark(X)) r14: mark(tail(X)) -> a__tail(mark(X)) r15: mark(nil()) -> nil() r16: mark(cons(X1,X2)) -> cons(mark(X1),X2) r17: mark(s(X)) -> s(mark(X)) r18: mark(|0|()) -> |0|() r19: a__incr(X) -> incr(X) r20: a__adx(X) -> adx(X) r21: a__nats() -> nats() r22: a__zeros() -> zeros() r23: a__head(X) -> head(X) r24: a__tail(X) -> tail(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__incr(nil()) -> nil() r2: a__incr(cons(X,L)) -> cons(s(mark(X)),incr(L)) r3: a__adx(nil()) -> nil() r4: a__adx(cons(X,L)) -> a__incr(cons(mark(X),adx(L))) r5: a__nats() -> a__adx(a__zeros()) r6: a__zeros() -> cons(|0|(),zeros()) r7: a__head(cons(X,L)) -> mark(X) r8: a__tail(cons(X,L)) -> mark(L) r9: mark(incr(X)) -> a__incr(mark(X)) r10: mark(adx(X)) -> a__adx(mark(X)) r11: mark(nats()) -> a__nats() r12: mark(zeros()) -> a__zeros() r13: mark(head(X)) -> a__head(mark(X)) r14: mark(tail(X)) -> a__tail(mark(X)) r15: mark(nil()) -> nil() r16: mark(cons(X1,X2)) -> cons(mark(X1),X2) r17: mark(s(X)) -> s(mark(X)) r18: mark(|0|()) -> |0|() r19: a__incr(X) -> incr(X) r20: a__adx(X) -> adx(X) r21: a__nats() -> nats() r22: a__zeros() -> zeros() r23: a__head(X) -> head(X) r24: a__tail(X) -> tail(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = ((1,0),(1,1)) x1 cons_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (1,1) precedence: mark# = cons partial status: pi(mark#) = [1] pi(cons) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.