YES We show the termination of the TRS R: a__f(|0|()) -> cons(|0|(),f(s(|0|()))) a__f(s(|0|())) -> a__f(a__p(s(|0|()))) a__p(s(X)) -> mark(X) mark(f(X)) -> a__f(mark(X)) mark(p(X)) -> a__p(mark(X)) mark(|0|()) -> |0|() mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(s(X)) -> s(mark(X)) a__f(X) -> f(X) a__p(X) -> p(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(s(|0|())) -> a__f#(a__p(s(|0|()))) p2: a__f#(s(|0|())) -> a__p#(s(|0|())) p3: a__p#(s(X)) -> mark#(X) p4: mark#(f(X)) -> a__f#(mark(X)) p5: mark#(f(X)) -> mark#(X) p6: mark#(p(X)) -> a__p#(mark(X)) p7: mark#(p(X)) -> mark#(X) p8: mark#(cons(X1,X2)) -> mark#(X1) p9: mark#(s(X)) -> mark#(X) and R consists of: r1: a__f(|0|()) -> cons(|0|(),f(s(|0|()))) r2: a__f(s(|0|())) -> a__f(a__p(s(|0|()))) r3: a__p(s(X)) -> mark(X) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(p(X)) -> a__p(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(cons(X1,X2)) -> cons(mark(X1),X2) r8: mark(s(X)) -> s(mark(X)) r9: a__f(X) -> f(X) r10: a__p(X) -> p(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(s(|0|())) -> a__f#(a__p(s(|0|()))) p2: a__f#(s(|0|())) -> a__p#(s(|0|())) p3: a__p#(s(X)) -> mark#(X) p4: mark#(s(X)) -> mark#(X) p5: mark#(cons(X1,X2)) -> mark#(X1) p6: mark#(p(X)) -> mark#(X) p7: mark#(p(X)) -> a__p#(mark(X)) p8: mark#(f(X)) -> mark#(X) p9: mark#(f(X)) -> a__f#(mark(X)) and R consists of: r1: a__f(|0|()) -> cons(|0|(),f(s(|0|()))) r2: a__f(s(|0|())) -> a__f(a__p(s(|0|()))) r3: a__p(s(X)) -> mark(X) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(p(X)) -> a__p(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(cons(X1,X2)) -> cons(mark(X1),X2) r8: mark(s(X)) -> s(mark(X)) r9: a__f(X) -> f(X) r10: a__p(X) -> p(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__f#_A(x1) = ((1,0),(0,0)) x1 + (2,4) s_A(x1) = x1 + (6,2) |0|_A() = (1,1) a__p_A(x1) = ((1,0),(0,0)) x1 + (0,2) a__p#_A(x1) = ((1,0),(0,0)) x1 + (1,2) mark#_A(x1) = ((1,0),(0,0)) x1 + (4,5) cons_A(x1,x2) = x1 + (1,1) p_A(x1) = ((1,0),(0,0)) x1 + (0,1) mark_A(x1) = ((1,0),(1,0)) x1 + (2,3) f_A(x1) = ((1,0),(0,0)) x1 + (5,6) a__f_A(x1) = ((1,0),(0,0)) x1 + (5,7) precedence: s = a__p = mark = a__f > f > cons > p > a__f# = |0| = a__p# = mark# partial status: pi(a__f#) = [] pi(s) = [] pi(|0|) = [] pi(a__p) = [] pi(a__p#) = [] pi(mark#) = [] pi(cons) = [1] pi(p) = [] pi(mark) = [] pi(f) = [] pi(a__f) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(s(|0|())) -> a__f#(a__p(s(|0|()))) p2: a__f#(s(|0|())) -> a__p#(s(|0|())) p3: a__p#(s(X)) -> mark#(X) p4: mark#(s(X)) -> mark#(X) p5: mark#(p(X)) -> mark#(X) p6: mark#(p(X)) -> a__p#(mark(X)) p7: mark#(f(X)) -> mark#(X) p8: mark#(f(X)) -> a__f#(mark(X)) and R consists of: r1: a__f(|0|()) -> cons(|0|(),f(s(|0|()))) r2: a__f(s(|0|())) -> a__f(a__p(s(|0|()))) r3: a__p(s(X)) -> mark(X) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(p(X)) -> a__p(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(cons(X1,X2)) -> cons(mark(X1),X2) r8: mark(s(X)) -> s(mark(X)) r9: a__f(X) -> f(X) r10: a__p(X) -> p(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(s(|0|())) -> a__f#(a__p(s(|0|()))) p2: a__f#(s(|0|())) -> a__p#(s(|0|())) p3: a__p#(s(X)) -> mark#(X) p4: mark#(f(X)) -> a__f#(mark(X)) p5: mark#(f(X)) -> mark#(X) p6: mark#(p(X)) -> a__p#(mark(X)) p7: mark#(p(X)) -> mark#(X) p8: mark#(s(X)) -> mark#(X) and R consists of: r1: a__f(|0|()) -> cons(|0|(),f(s(|0|()))) r2: a__f(s(|0|())) -> a__f(a__p(s(|0|()))) r3: a__p(s(X)) -> mark(X) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(p(X)) -> a__p(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(cons(X1,X2)) -> cons(mark(X1),X2) r8: mark(s(X)) -> s(mark(X)) r9: a__f(X) -> f(X) r10: a__p(X) -> p(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__f#_A(x1) = (8,7) s_A(x1) = ((1,0),(0,0)) x1 + (3,4) |0|_A() = (2,5) a__p_A(x1) = ((1,0),(0,0)) x1 + (0,2) a__p#_A(x1) = x1 + (2,2) mark#_A(x1) = ((1,0),(0,0)) x1 + (5,5) f_A(x1) = ((1,0),(0,0)) x1 + (4,4) mark_A(x1) = x1 + (2,2) p_A(x1) = ((1,0),(0,0)) x1 a__f_A(x1) = ((1,0),(0,0)) x1 + (4,5) cons_A(x1,x2) = (1,2) precedence: a__f# = a__p = a__p# = mark# = mark = p > f = a__f > cons > s = |0| partial status: pi(a__f#) = [] pi(s) = [] pi(|0|) = [] pi(a__p) = [] pi(a__p#) = [] pi(mark#) = [] pi(f) = [] pi(mark) = [] pi(p) = [] pi(a__f) = [] pi(cons) = [] The next rules are strictly ordered: p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(s(|0|())) -> a__f#(a__p(s(|0|()))) p2: a__f#(s(|0|())) -> a__p#(s(|0|())) p3: a__p#(s(X)) -> mark#(X) p4: mark#(f(X)) -> a__f#(mark(X)) p5: mark#(f(X)) -> mark#(X) p6: mark#(p(X)) -> a__p#(mark(X)) p7: mark#(p(X)) -> mark#(X) and R consists of: r1: a__f(|0|()) -> cons(|0|(),f(s(|0|()))) r2: a__f(s(|0|())) -> a__f(a__p(s(|0|()))) r3: a__p(s(X)) -> mark(X) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(p(X)) -> a__p(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(cons(X1,X2)) -> cons(mark(X1),X2) r8: mark(s(X)) -> s(mark(X)) r9: a__f(X) -> f(X) r10: a__p(X) -> p(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(s(|0|())) -> a__f#(a__p(s(|0|()))) p2: a__f#(s(|0|())) -> a__p#(s(|0|())) p3: a__p#(s(X)) -> mark#(X) p4: mark#(p(X)) -> mark#(X) p5: mark#(p(X)) -> a__p#(mark(X)) p6: mark#(f(X)) -> mark#(X) p7: mark#(f(X)) -> a__f#(mark(X)) and R consists of: r1: a__f(|0|()) -> cons(|0|(),f(s(|0|()))) r2: a__f(s(|0|())) -> a__f(a__p(s(|0|()))) r3: a__p(s(X)) -> mark(X) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(p(X)) -> a__p(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(cons(X1,X2)) -> cons(mark(X1),X2) r8: mark(s(X)) -> s(mark(X)) r9: a__f(X) -> f(X) r10: a__p(X) -> p(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__f#_A(x1) = x1 + (2,1) s_A(x1) = x1 + (6,0) |0|_A() = (2,21) a__p_A(x1) = ((1,0),(0,0)) x1 + (0,9) a__p#_A(x1) = ((1,0),(1,0)) x1 + (1,12) mark#_A(x1) = ((1,0),(0,0)) x1 + (5,13) p_A(x1) = ((1,0),(0,0)) x1 + (0,8) mark_A(x1) = ((1,0),(0,0)) x1 + (2,11) f_A(x1) = ((1,0),(0,0)) x1 + (0,9) a__f_A(x1) = ((1,0),(0,0)) x1 + (0,10) cons_A(x1,x2) = ((0,0),(1,0)) x2 + (1,1) precedence: mark = a__f > f > a__f# = s = a__p# = mark# > |0| = a__p > p > cons partial status: pi(a__f#) = [] pi(s) = [1] pi(|0|) = [] pi(a__p) = [] pi(a__p#) = [] pi(mark#) = [] pi(p) = [] pi(mark) = [] pi(f) = [] pi(a__f) = [] pi(cons) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(s(|0|())) -> a__p#(s(|0|())) p2: a__p#(s(X)) -> mark#(X) p3: mark#(p(X)) -> mark#(X) p4: mark#(p(X)) -> a__p#(mark(X)) p5: mark#(f(X)) -> mark#(X) p6: mark#(f(X)) -> a__f#(mark(X)) and R consists of: r1: a__f(|0|()) -> cons(|0|(),f(s(|0|()))) r2: a__f(s(|0|())) -> a__f(a__p(s(|0|()))) r3: a__p(s(X)) -> mark(X) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(p(X)) -> a__p(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(cons(X1,X2)) -> cons(mark(X1),X2) r8: mark(s(X)) -> s(mark(X)) r9: a__f(X) -> f(X) r10: a__p(X) -> p(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(s(|0|())) -> a__p#(s(|0|())) p2: a__p#(s(X)) -> mark#(X) p3: mark#(f(X)) -> a__f#(mark(X)) p4: mark#(f(X)) -> mark#(X) p5: mark#(p(X)) -> a__p#(mark(X)) p6: mark#(p(X)) -> mark#(X) and R consists of: r1: a__f(|0|()) -> cons(|0|(),f(s(|0|()))) r2: a__f(s(|0|())) -> a__f(a__p(s(|0|()))) r3: a__p(s(X)) -> mark(X) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(p(X)) -> a__p(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(cons(X1,X2)) -> cons(mark(X1),X2) r8: mark(s(X)) -> s(mark(X)) r9: a__f(X) -> f(X) r10: a__p(X) -> p(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__f#_A(x1) = ((1,0),(0,0)) x1 + (3,18) s_A(x1) = ((1,0),(1,0)) x1 + (10,0) |0|_A() = (6,3) a__p#_A(x1) = ((1,0),(1,0)) x1 + (2,1) mark#_A(x1) = ((1,0),(1,0)) x1 + (11,10) f_A(x1) = x1 + (9,19) mark_A(x1) = ((1,0),(1,1)) x1 + (2,2) p_A(x1) = ((1,0),(0,0)) x1 + (0,4) a__f_A(x1) = x1 + (9,23) cons_A(x1,x2) = (1,3) a__p_A(x1) = ((1,0),(0,0)) x1 + (0,5) precedence: |0| = f = mark = a__f = a__p > cons > a__f# = a__p# = mark# > p > s partial status: pi(a__f#) = [] pi(s) = [] pi(|0|) = [] pi(a__p#) = [] pi(mark#) = [] pi(f) = [] pi(mark) = [] pi(p) = [] pi(a__f) = [] pi(cons) = [] pi(a__p) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(s(|0|())) -> a__p#(s(|0|())) p2: a__p#(s(X)) -> mark#(X) p3: mark#(f(X)) -> mark#(X) p4: mark#(p(X)) -> a__p#(mark(X)) p5: mark#(p(X)) -> mark#(X) and R consists of: r1: a__f(|0|()) -> cons(|0|(),f(s(|0|()))) r2: a__f(s(|0|())) -> a__f(a__p(s(|0|()))) r3: a__p(s(X)) -> mark(X) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(p(X)) -> a__p(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(cons(X1,X2)) -> cons(mark(X1),X2) r8: mark(s(X)) -> s(mark(X)) r9: a__f(X) -> f(X) r10: a__p(X) -> p(X) The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__p#(s(X)) -> mark#(X) p2: mark#(p(X)) -> mark#(X) p3: mark#(p(X)) -> a__p#(mark(X)) p4: mark#(f(X)) -> mark#(X) and R consists of: r1: a__f(|0|()) -> cons(|0|(),f(s(|0|()))) r2: a__f(s(|0|())) -> a__f(a__p(s(|0|()))) r3: a__p(s(X)) -> mark(X) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(p(X)) -> a__p(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(cons(X1,X2)) -> cons(mark(X1),X2) r8: mark(s(X)) -> s(mark(X)) r9: a__f(X) -> f(X) r10: a__p(X) -> p(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__p#_A(x1) = ((1,0),(1,1)) x1 + (1,1) s_A(x1) = x1 + (5,7) mark#_A(x1) = ((1,0),(1,1)) x1 + (3,6) p_A(x1) = x1 + (0,5) mark_A(x1) = x1 + (1,8) f_A(x1) = ((1,0),(0,0)) x1 + (4,3) a__f_A(x1) = ((1,0),(0,0)) x1 + (4,10) |0|_A() = (2,11) cons_A(x1,x2) = (1,9) a__p_A(x1) = x1 + (0,5) precedence: s = mark = a__f = |0| = a__p > mark# = f > p > cons > a__p# partial status: pi(a__p#) = [1] pi(s) = [] pi(mark#) = [1] pi(p) = [] pi(mark) = [] pi(f) = [] pi(a__f) = [] pi(|0|) = [] pi(cons) = [] pi(a__p) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(p(X)) -> mark#(X) p2: mark#(p(X)) -> a__p#(mark(X)) p3: mark#(f(X)) -> mark#(X) and R consists of: r1: a__f(|0|()) -> cons(|0|(),f(s(|0|()))) r2: a__f(s(|0|())) -> a__f(a__p(s(|0|()))) r3: a__p(s(X)) -> mark(X) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(p(X)) -> a__p(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(cons(X1,X2)) -> cons(mark(X1),X2) r8: mark(s(X)) -> s(mark(X)) r9: a__f(X) -> f(X) r10: a__p(X) -> p(X) The estimated dependency graph contains the following SCCs: {p1, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(p(X)) -> mark#(X) p2: mark#(f(X)) -> mark#(X) and R consists of: r1: a__f(|0|()) -> cons(|0|(),f(s(|0|()))) r2: a__f(s(|0|())) -> a__f(a__p(s(|0|()))) r3: a__p(s(X)) -> mark(X) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(p(X)) -> a__p(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(cons(X1,X2)) -> cons(mark(X1),X2) r8: mark(s(X)) -> s(mark(X)) r9: a__f(X) -> f(X) r10: a__p(X) -> p(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = ((1,0),(0,0)) x1 + (1,1) p_A(x1) = x1 + (2,2) f_A(x1) = ((1,0),(0,0)) x1 + (2,2) precedence: mark# = p = f partial status: pi(mark#) = [] pi(p) = [1] pi(f) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X)) -> mark#(X) and R consists of: r1: a__f(|0|()) -> cons(|0|(),f(s(|0|()))) r2: a__f(s(|0|())) -> a__f(a__p(s(|0|()))) r3: a__p(s(X)) -> mark(X) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(p(X)) -> a__p(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(cons(X1,X2)) -> cons(mark(X1),X2) r8: mark(s(X)) -> s(mark(X)) r9: a__f(X) -> f(X) r10: a__p(X) -> p(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X)) -> mark#(X) and R consists of: r1: a__f(|0|()) -> cons(|0|(),f(s(|0|()))) r2: a__f(s(|0|())) -> a__f(a__p(s(|0|()))) r3: a__p(s(X)) -> mark(X) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(p(X)) -> a__p(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(cons(X1,X2)) -> cons(mark(X1),X2) r8: mark(s(X)) -> s(mark(X)) r9: a__f(X) -> f(X) r10: a__p(X) -> p(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: mark#_A(x1) = ((1,0),(1,0)) x1 + (2,2) f_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: mark# = f partial status: pi(mark#) = [] pi(f) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.