YES We show the termination of the TRS R: __(__(X,Y),Z) -> __(X,__(Y,Z)) __(X,nil()) -> X __(nil(),X) -> X U11(tt()) -> tt() U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U31(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U61(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U72(tt()) -> tt() U81(tt()) -> tt() isList(V) -> U11(isNeList(activate(V))) isList(n__nil()) -> tt() isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isNePal(V) -> U61(isQid(activate(V))) isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P)) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() __(X1,X2) -> n____(X1,X2) a() -> n__a() e() -> n__e() i() -> n__i() o() -> n__o() u() -> n__u() activate(n__nil()) -> nil() activate(n____(X1,X2)) -> __(X1,X2) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__o()) -> o() activate(n__u()) -> u() activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) p2: __#(__(X,Y),Z) -> __#(Y,Z) p3: U21#(tt(),V2) -> U22#(isList(activate(V2))) p4: U21#(tt(),V2) -> isList#(activate(V2)) p5: U21#(tt(),V2) -> activate#(V2) p6: U41#(tt(),V2) -> U42#(isNeList(activate(V2))) p7: U41#(tt(),V2) -> isNeList#(activate(V2)) p8: U41#(tt(),V2) -> activate#(V2) p9: U51#(tt(),V2) -> U52#(isList(activate(V2))) p10: U51#(tt(),V2) -> isList#(activate(V2)) p11: U51#(tt(),V2) -> activate#(V2) p12: U71#(tt(),P) -> U72#(isPal(activate(P))) p13: U71#(tt(),P) -> isPal#(activate(P)) p14: U71#(tt(),P) -> activate#(P) p15: isList#(V) -> U11#(isNeList(activate(V))) p16: isList#(V) -> isNeList#(activate(V)) p17: isList#(V) -> activate#(V) p18: isList#(n____(V1,V2)) -> U21#(isList(activate(V1)),activate(V2)) p19: isList#(n____(V1,V2)) -> isList#(activate(V1)) p20: isList#(n____(V1,V2)) -> activate#(V1) p21: isList#(n____(V1,V2)) -> activate#(V2) p22: isNeList#(V) -> U31#(isQid(activate(V))) p23: isNeList#(V) -> isQid#(activate(V)) p24: isNeList#(V) -> activate#(V) p25: isNeList#(n____(V1,V2)) -> U41#(isList(activate(V1)),activate(V2)) p26: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p27: isNeList#(n____(V1,V2)) -> activate#(V1) p28: isNeList#(n____(V1,V2)) -> activate#(V2) p29: isNeList#(n____(V1,V2)) -> U51#(isNeList(activate(V1)),activate(V2)) p30: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p31: isNeList#(n____(V1,V2)) -> activate#(V1) p32: isNeList#(n____(V1,V2)) -> activate#(V2) p33: isNePal#(V) -> U61#(isQid(activate(V))) p34: isNePal#(V) -> isQid#(activate(V)) p35: isNePal#(V) -> activate#(V) p36: isNePal#(n____(I,__(P,I))) -> U71#(isQid(activate(I)),activate(P)) p37: isNePal#(n____(I,__(P,I))) -> isQid#(activate(I)) p38: isNePal#(n____(I,__(P,I))) -> activate#(I) p39: isNePal#(n____(I,__(P,I))) -> activate#(P) p40: isPal#(V) -> U81#(isNePal(activate(V))) p41: isPal#(V) -> isNePal#(activate(V)) p42: isPal#(V) -> activate#(V) p43: activate#(n__nil()) -> nil#() p44: activate#(n____(X1,X2)) -> __#(X1,X2) p45: activate#(n__a()) -> a#() p46: activate#(n__e()) -> e#() p47: activate#(n__i()) -> i#() p48: activate#(n__o()) -> o#() p49: activate#(n__u()) -> u#() and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(X1,X2) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The estimated dependency graph contains the following SCCs: {p13, p36, p41} {p4, p7, p10, p16, p18, p19, p25, p26, p29, p30} {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> isNePal#(activate(V)) p2: isNePal#(n____(I,__(P,I))) -> U71#(isQid(activate(I)),activate(P)) p3: U71#(tt(),P) -> isPal#(activate(P)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(X1,X2) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The set of usable rules consists of r1, r2, r3, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isPal#_A(x1) = ((0,0),(1,0)) x1 + (0,10) isNePal#_A(x1) = ((0,0),(1,0)) x1 + (0,7) activate_A(x1) = x1 + (2,14) n_____A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (0,7) ___A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (0,22) U71#_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (0,1) isQid_A(x1) = ((1,0),(0,0)) x1 + (1,8) tt_A() = (12,2) nil_A() = (2,2) n__nil_A() = (1,1) a_A() = (14,18) n__a_A() = (13,3) e_A() = (14,2) n__e_A() = (13,1) i_A() = (14,0) n__i_A() = (13,3) o_A() = (14,0) n__o_A() = (13,3) u_A() = (14,2) n__u_A() = (13,1) precedence: isQid > __ = tt = n__e > e > u > n__u > isPal# = isNePal# = U71# > activate > nil = n__nil > o = n__o > i = n__i > n____ = a = n__a partial status: pi(isPal#) = [] pi(isNePal#) = [] pi(activate) = [1] pi(n____) = [] pi(__) = [1, 2] pi(U71#) = [] pi(isQid) = [] pi(tt) = [] pi(nil) = [] pi(n__nil) = [] pi(a) = [] pi(n__a) = [] pi(e) = [] pi(n__e) = [] pi(i) = [] pi(n__i) = [] pi(o) = [] pi(n__o) = [] pi(u) = [] pi(n__u) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> isNePal#(activate(V)) p2: isNePal#(n____(I,__(P,I))) -> U71#(isQid(activate(I)),activate(P)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(X1,X2) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(n____(V1,V2)) -> U51#(isNeList(activate(V1)),activate(V2)) p2: U51#(tt(),V2) -> isList#(activate(V2)) p3: isList#(n____(V1,V2)) -> isList#(activate(V1)) p4: isList#(n____(V1,V2)) -> U21#(isList(activate(V1)),activate(V2)) p5: U21#(tt(),V2) -> isList#(activate(V2)) p6: isList#(V) -> isNeList#(activate(V)) p7: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p8: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p9: isNeList#(n____(V1,V2)) -> U41#(isList(activate(V1)),activate(V2)) p10: U41#(tt(),V2) -> isNeList#(activate(V2)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(X1,X2) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r16, r17, r18, r19, r20, r21, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isNeList#_A(x1) = x1 + (26,19) n_____A(x1,x2) = ((1,0),(1,0)) x1 + x2 + (25,23) U51#_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (23,5) isNeList_A(x1) = ((0,0),(1,0)) x1 + (27,2) activate_A(x1) = x1 + (0,7) tt_A() = (5,25) isList#_A(x1) = x1 + (27,27) U21#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (23,0) isList_A(x1) = ((0,0),(1,0)) x1 + (18,3) U41#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (33,42) U22_A(x1) = ((1,0),(0,0)) x1 + (0,26) U42_A(x1) = (5,26) U52_A(x1) = (6,1) ___A(x1,x2) = ((1,0),(1,0)) x1 + x2 + (25,24) nil_A() = (23,2) U11_A(x1) = ((0,0),(1,0)) x1 + (17,21) U21_A(x1,x2) = (18,27) U31_A(x1) = (6,1) U41_A(x1,x2) = ((1,0),(1,1)) x1 + (8,1) U51_A(x1,x2) = ((0,0),(1,0)) x1 + (26,1) isQid_A(x1) = ((1,0),(0,0)) x1 + (1,26) n__a_A() = (6,1) n__e_A() = (6,26) n__i_A() = (6,26) n__o_A() = (6,1) n__u_A() = (6,1) n__nil_A() = (23,1) a_A() = (6,2) e_A() = (6,32) i_A() = (6,27) o_A() = (6,2) u_A() = (6,7) precedence: activate = isList = __ = U21 = n__a = n__i = a > i > U11 = n__e = e > isNeList# = U51# = isList# = U21# = U41# > n____ > n__o = o > U52 = nil = U31 = isQid > isNeList = U41 > tt = U22 = U42 = n__nil > n__u = u > U51 partial status: pi(isNeList#) = [] pi(n____) = [] pi(U51#) = [] pi(isNeList) = [] pi(activate) = [] pi(tt) = [] pi(isList#) = [] pi(U21#) = [] pi(isList) = [] pi(U41#) = [] pi(U22) = [] pi(U42) = [] pi(U52) = [] pi(__) = [] pi(nil) = [] pi(U11) = [] pi(U21) = [] pi(U31) = [] pi(U41) = [] pi(U51) = [] pi(isQid) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(n__nil) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(n____(V1,V2)) -> U51#(isNeList(activate(V1)),activate(V2)) p2: U51#(tt(),V2) -> isList#(activate(V2)) p3: isList#(n____(V1,V2)) -> isList#(activate(V1)) p4: isList#(n____(V1,V2)) -> U21#(isList(activate(V1)),activate(V2)) p5: U21#(tt(),V2) -> isList#(activate(V2)) p6: isList#(V) -> isNeList#(activate(V)) p7: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p8: isNeList#(n____(V1,V2)) -> U41#(isList(activate(V1)),activate(V2)) p9: U41#(tt(),V2) -> isNeList#(activate(V2)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(X1,X2) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(n____(V1,V2)) -> U51#(isNeList(activate(V1)),activate(V2)) p2: U51#(tt(),V2) -> isList#(activate(V2)) p3: isList#(V) -> isNeList#(activate(V)) p4: isNeList#(n____(V1,V2)) -> U41#(isList(activate(V1)),activate(V2)) p5: U41#(tt(),V2) -> isNeList#(activate(V2)) p6: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p7: isList#(n____(V1,V2)) -> U21#(isList(activate(V1)),activate(V2)) p8: U21#(tt(),V2) -> isList#(activate(V2)) p9: isList#(n____(V1,V2)) -> isList#(activate(V1)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(X1,X2) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r16, r17, r18, r19, r20, r21, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isNeList#_A(x1) = x1 + (1,2) n_____A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (20,73) U51#_A(x1,x2) = ((1,0),(0,0)) x2 + (7,1) isNeList_A(x1) = ((1,0),(0,0)) x1 + (10,23) activate_A(x1) = ((1,0),(0,0)) x1 + (2,41) tt_A() = (21,38) isList#_A(x1) = ((1,0),(1,0)) x1 + (4,44) U41#_A(x1,x2) = ((1,0),(1,0)) x2 + (4,72) isList_A(x1) = x1 + (23,24) U21#_A(x1,x2) = ((1,0),(1,0)) x2 + (6,61) U22_A(x1) = ((1,0),(1,0)) x1 + (1,16) U42_A(x1) = (22,39) U52_A(x1) = (22,39) ___A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (21,74) nil_A() = (22,42) U11_A(x1) = ((0,0),(1,0)) x1 + (22,18) U21_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (6,45) U31_A(x1) = ((1,0),(1,0)) x1 + (1,16) U41_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (2,40) U51_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (5,19) isQid_A(x1) = ((1,0),(0,0)) x1 + (6,1) n__a_A() = (22,1) n__e_A() = (22,39) n__i_A() = (22,1) n__o_A() = (22,39) n__u_A() = (22,0) n__nil_A() = (22,1) a_A() = (22,1) e_A() = (22,42) i_A() = (22,1) o_A() = (23,40) u_A() = (23,1) precedence: a > e > U41 > isNeList > activate = isList = U21 = i > U42 > n____ = __ > isList# > U21# > U41# = n__a > U31 = n__u > tt = U22 = U52 = U51 = n__e = n__i = n__nil > isNeList# = nil = isQid = n__o > o > U51# = u > U11 partial status: pi(isNeList#) = [1] pi(n____) = [] pi(U51#) = [] pi(isNeList) = [] pi(activate) = [] pi(tt) = [] pi(isList#) = [] pi(U41#) = [] pi(isList) = [] pi(U21#) = [] pi(U22) = [] pi(U42) = [] pi(U52) = [] pi(__) = [1] pi(nil) = [] pi(U11) = [] pi(U21) = [] pi(U31) = [] pi(U41) = [] pi(U51) = [] pi(isQid) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(n__nil) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p9 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(n____(V1,V2)) -> U51#(isNeList(activate(V1)),activate(V2)) p2: U51#(tt(),V2) -> isList#(activate(V2)) p3: isList#(V) -> isNeList#(activate(V)) p4: isNeList#(n____(V1,V2)) -> U41#(isList(activate(V1)),activate(V2)) p5: U41#(tt(),V2) -> isNeList#(activate(V2)) p6: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p7: isList#(n____(V1,V2)) -> U21#(isList(activate(V1)),activate(V2)) p8: U21#(tt(),V2) -> isList#(activate(V2)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(X1,X2) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(n____(V1,V2)) -> U51#(isNeList(activate(V1)),activate(V2)) p2: U51#(tt(),V2) -> isList#(activate(V2)) p3: isList#(n____(V1,V2)) -> U21#(isList(activate(V1)),activate(V2)) p4: U21#(tt(),V2) -> isList#(activate(V2)) p5: isList#(V) -> isNeList#(activate(V)) p6: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p7: isNeList#(n____(V1,V2)) -> U41#(isList(activate(V1)),activate(V2)) p8: U41#(tt(),V2) -> isNeList#(activate(V2)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(X1,X2) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r16, r17, r18, r19, r20, r21, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isNeList#_A(x1) = ((1,0),(1,1)) x1 + (14,1) n_____A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,0)) x2 + (34,3) U51#_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (27,14) isNeList_A(x1) = x1 + (9,3) activate_A(x1) = ((1,0),(0,0)) x1 + (6,4) tt_A() = (25,1) isList#_A(x1) = ((1,0),(1,1)) x1 + (20,28) U21#_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (2,38) isList_A(x1) = ((1,0),(0,0)) x1 + (17,5) U41#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + (1,12) U22_A(x1) = (26,2) U42_A(x1) = (26,2) U52_A(x1) = ((1,0),(1,1)) x1 + (1,1) ___A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (35,5) nil_A() = (27,5) U11_A(x1) = ((1,0),(0,0)) x1 + (1,2) U21_A(x1,x2) = ((0,0),(1,0)) x2 + (27,0) U31_A(x1) = ((1,0),(0,0)) x1 + (1,2) U41_A(x1,x2) = ((1,0),(0,0)) x1 + (2,5) U51_A(x1,x2) = ((1,0),(0,0)) x2 + (29,30) isQid_A(x1) = ((1,0),(0,0)) x1 + (1,2) n__a_A() = (26,2) n__e_A() = (26,5) n__i_A() = (26,2) n__o_A() = (26,2) n__u_A() = (26,2) n__nil_A() = (26,2) a_A() = (27,5) e_A() = (27,4) i_A() = (27,5) o_A() = (26,5) u_A() = (27,5) precedence: n__e > isNeList = U31 = U41 > tt = U42 = isQid > isList = U11 = U21 = i > n__i > U41# > isNeList# > U51# > activate = e > U21# = n__o = a > isList# = __ > nil = n__nil > n__a > n__u = o = u > U22 > n____ = U52 = U51 partial status: pi(isNeList#) = [1] pi(n____) = [] pi(U51#) = [] pi(isNeList) = [] pi(activate) = [] pi(tt) = [] pi(isList#) = [1] pi(U21#) = [] pi(isList) = [] pi(U41#) = [] pi(U22) = [] pi(U42) = [] pi(U52) = [1] pi(__) = [1, 2] pi(nil) = [] pi(U11) = [] pi(U21) = [] pi(U31) = [] pi(U41) = [] pi(U51) = [] pi(isQid) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(n__nil) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(n____(V1,V2)) -> U51#(isNeList(activate(V1)),activate(V2)) p2: U51#(tt(),V2) -> isList#(activate(V2)) p3: isList#(n____(V1,V2)) -> U21#(isList(activate(V1)),activate(V2)) p4: U21#(tt(),V2) -> isList#(activate(V2)) p5: isList#(V) -> isNeList#(activate(V)) p6: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p7: isNeList#(n____(V1,V2)) -> U41#(isList(activate(V1)),activate(V2)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(X1,X2) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(n____(V1,V2)) -> U51#(isNeList(activate(V1)),activate(V2)) p2: U51#(tt(),V2) -> isList#(activate(V2)) p3: isList#(V) -> isNeList#(activate(V)) p4: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p5: isList#(n____(V1,V2)) -> U21#(isList(activate(V1)),activate(V2)) p6: U21#(tt(),V2) -> isList#(activate(V2)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(X1,X2) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r16, r17, r18, r19, r20, r21, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isNeList#_A(x1) = ((0,0),(1,0)) x1 + (0,1) n_____A(x1,x2) = x1 + x2 + (12,9) U51#_A(x1,x2) = ((0,0),(1,0)) x2 + (0,9) isNeList_A(x1) = ((0,0),(1,0)) x1 + (5,11) activate_A(x1) = x1 + (3,18) tt_A() = (0,0) isList#_A(x1) = ((0,0),(1,0)) x1 + (0,5) U21#_A(x1,x2) = ((0,0),(1,0)) x2 + (0,8) isList_A(x1) = x1 + (7,6) U22_A(x1) = (0,0) U42_A(x1) = ((0,0),(1,0)) x1 + (1,5) U52_A(x1) = (1,1) ___A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (13,0) nil_A() = (2,1) U11_A(x1) = x1 + (1,1) U21_A(x1,x2) = (0,0) U31_A(x1) = (1,10) U41_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (4,9) U51_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (2,17) isQid_A(x1) = ((1,0),(0,0)) x1 + (1,1) n__a_A() = (1,1) n__e_A() = (1,1) n__i_A() = (1,1) n__o_A() = (1,1) n__u_A() = (1,1) n__nil_A() = (1,2) a_A() = (1,1) e_A() = (2,20) i_A() = (2,0) o_A() = (1,20) u_A() = (2,0) precedence: __ = U41 = e = i > isNeList# = isList# = U21# > nil = n__nil > U51# = activate > isNeList = isList = U31 > a > U42 = U11 = isQid = n__u > U52 = n__a = n__e = n__o > u > o > U51 > n____ = tt = U22 = U21 = n__i partial status: pi(isNeList#) = [] pi(n____) = [1] pi(U51#) = [] pi(isNeList) = [] pi(activate) = [1] pi(tt) = [] pi(isList#) = [] pi(U21#) = [] pi(isList) = [1] pi(U22) = [] pi(U42) = [] pi(U52) = [] pi(__) = [] pi(nil) = [] pi(U11) = [1] pi(U21) = [] pi(U31) = [] pi(U41) = [] pi(U51) = [] pi(isQid) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(n__nil) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U51#(tt(),V2) -> isList#(activate(V2)) p2: isList#(V) -> isNeList#(activate(V)) p3: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p4: isList#(n____(V1,V2)) -> U21#(isList(activate(V1)),activate(V2)) p5: U21#(tt(),V2) -> isList#(activate(V2)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(X1,X2) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isList#(V) -> isNeList#(activate(V)) p2: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p3: isList#(n____(V1,V2)) -> U21#(isList(activate(V1)),activate(V2)) p4: U21#(tt(),V2) -> isList#(activate(V2)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(X1,X2) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r16, r17, r18, r19, r20, r21, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isList#_A(x1) = ((1,0),(0,0)) x1 + (12,10) isNeList#_A(x1) = ((1,0),(1,0)) x1 + (1,1) activate_A(x1) = ((1,0),(1,1)) x1 + (10,45) n_____A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (43,39) U21#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (21,11) isList_A(x1) = (11,47) tt_A() = (2,9) U42_A(x1) = ((1,0),(1,1)) x1 + (1,1) U52_A(x1) = ((0,0),(1,0)) x1 + (3,8) U22_A(x1) = (2,10) U31_A(x1) = (3,1) U41_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (42,42) isNeList_A(x1) = x1 + (32,7) U51_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (32,46) isQid_A(x1) = (33,8) n__a_A() = (1,1) n__e_A() = (3,10) n__i_A() = (1,1) n__o_A() = (3,10) n__u_A() = (3,10) ___A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (44,40) nil_A() = (4,1) U11_A(x1) = ((0,0),(1,0)) x1 + (3,6) U21_A(x1,x2) = ((1,0),(0,0)) x1 + (0,11) n__nil_A() = (3,10) a_A() = (2,2) e_A() = (3,59) i_A() = (2,48) o_A() = (3,11) u_A() = (12,9) precedence: U31 = n__nil > U21 > e > a > isList = tt = U52 > U42 > U51 > isList# = isNeList# = n__e = n__i = nil > activate = U41 = i > isQid = n__a = n__o = __ > n____ > U21# = isNeList = U11 > o > U22 = n__u = u partial status: pi(isList#) = [] pi(isNeList#) = [] pi(activate) = [1] pi(n____) = [1, 2] pi(U21#) = [] pi(isList) = [] pi(tt) = [] pi(U42) = [1] pi(U52) = [] pi(U22) = [] pi(U31) = [] pi(U41) = [] pi(isNeList) = [1] pi(U51) = [2] pi(isQid) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(__) = [1] pi(nil) = [] pi(U11) = [] pi(U21) = [] pi(n__nil) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p2: isList#(n____(V1,V2)) -> U21#(isList(activate(V1)),activate(V2)) p3: U21#(tt(),V2) -> isList#(activate(V2)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(X1,X2) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isList#(n____(V1,V2)) -> U21#(isList(activate(V1)),activate(V2)) p2: U21#(tt(),V2) -> isList#(activate(V2)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(X1,X2) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r16, r17, r18, r19, r20, r21, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isList#_A(x1) = ((1,0),(1,1)) x1 + (1,1) n_____A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (48,2) U21#_A(x1,x2) = ((1,0),(1,1)) x2 + (8,26) isList_A(x1) = (5,0) activate_A(x1) = x1 + (6,18) tt_A() = (2,26) U42_A(x1) = (2,27) U52_A(x1) = ((0,0),(1,0)) x1 + (3,25) U22_A(x1) = ((0,0),(1,0)) x1 + (3,25) U31_A(x1) = ((1,0),(1,0)) x1 + (1,25) U41_A(x1,x2) = ((1,0),(0,0)) x1 + ((0,0),(1,0)) x2 + (0,28) isNeList_A(x1) = x1 + (9,15) U51_A(x1,x2) = ((0,0),(1,0)) x1 + (4,1) isQid_A(x1) = ((1,0),(0,0)) x1 + (1,16) n__a_A() = (3,25) n__e_A() = (3,1) n__i_A() = (3,1) n__o_A() = (3,27) n__u_A() = (3,27) ___A(x1,x2) = x1 + x2 + (49,1) nil_A() = (2,1) U11_A(x1) = ((0,0),(1,0)) x1 + (3,25) U21_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (4,1) n__nil_A() = (1,2) a_A() = (4,0) e_A() = (4,19) i_A() = (4,0) o_A() = (4,46) u_A() = (3,27) precedence: n____ = U42 = U41 = __ > a > U21# > isList# > isList > U22 = nil = U21 = n__nil > U31 > tt = U11 > activate > n__e = e > U52 = isNeList = U51 = n__a = n__i = n__u = i = o = u > n__o > isQid partial status: pi(isList#) = [1] pi(n____) = [] pi(U21#) = [] pi(isList) = [] pi(activate) = [1] pi(tt) = [] pi(U42) = [] pi(U52) = [] pi(U22) = [] pi(U31) = [] pi(U41) = [] pi(isNeList) = [] pi(U51) = [] pi(isQid) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(__) = [] pi(nil) = [] pi(U11) = [] pi(U21) = [] pi(n__nil) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U21#(tt(),V2) -> isList#(activate(V2)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(X1,X2) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) p2: __#(__(X,Y),Z) -> __#(Y,Z) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(X1,X2) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The set of usable rules consists of r1, r2, r3, r32 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: __#_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,0),(1,0)) x2 + (1,1) ___A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (2,0) nil_A() = (1,1) n_____A(x1,x2) = (1,0) precedence: __ > __# = nil = n____ partial status: pi(__#) = [1] pi(__) = [] pi(nil) = [] pi(n____) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(X1,X2) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(X1,X2) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The set of usable rules consists of r1, r2, r3, r32 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: __#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (1,2) ___A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (2,1) nil_A() = (1,1) n_____A(x1,x2) = (1,2) precedence: __# = __ = n____ > nil partial status: pi(__#) = [] pi(__) = [] pi(nil) = [] pi(n____) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.