YES We show the termination of the TRS R: __(__(X,Y),Z) -> __(X,__(Y,Z)) __(X,nil()) -> X __(nil(),X) -> X and(tt(),X) -> activate(X) isList(V) -> isNeList(activate(V)) isList(n__nil()) -> tt() isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) isNeList(V) -> isQid(activate(V)) isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) isNePal(V) -> isQid(activate(V)) isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) isPal(V) -> isNePal(activate(V)) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() __(X1,X2) -> n____(X1,X2) isList(X) -> n__isList(X) isNeList(X) -> n__isNeList(X) isPal(X) -> n__isPal(X) a() -> n__a() e() -> n__e() i() -> n__i() o() -> n__o() u() -> n__u() activate(n__nil()) -> nil() activate(n____(X1,X2)) -> __(X1,X2) activate(n__isList(X)) -> isList(X) activate(n__isNeList(X)) -> isNeList(X) activate(n__isPal(X)) -> isPal(X) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__o()) -> o() activate(n__u()) -> u() activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) p2: __#(__(X,Y),Z) -> __#(Y,Z) p3: and#(tt(),X) -> activate#(X) p4: isList#(V) -> isNeList#(activate(V)) p5: isList#(V) -> activate#(V) p6: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p7: isList#(n____(V1,V2)) -> isList#(activate(V1)) p8: isList#(n____(V1,V2)) -> activate#(V1) p9: isList#(n____(V1,V2)) -> activate#(V2) p10: isNeList#(V) -> isQid#(activate(V)) p11: isNeList#(V) -> activate#(V) p12: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p13: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p14: isNeList#(n____(V1,V2)) -> activate#(V1) p15: isNeList#(n____(V1,V2)) -> activate#(V2) p16: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p17: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p18: isNeList#(n____(V1,V2)) -> activate#(V1) p19: isNeList#(n____(V1,V2)) -> activate#(V2) p20: isNePal#(V) -> isQid#(activate(V)) p21: isNePal#(V) -> activate#(V) p22: isNePal#(n____(I,__(P,I))) -> and#(isQid(activate(I)),n__isPal(activate(P))) p23: isNePal#(n____(I,__(P,I))) -> isQid#(activate(I)) p24: isNePal#(n____(I,__(P,I))) -> activate#(I) p25: isNePal#(n____(I,__(P,I))) -> activate#(P) p26: isPal#(V) -> isNePal#(activate(V)) p27: isPal#(V) -> activate#(V) p28: activate#(n__nil()) -> nil#() p29: activate#(n____(X1,X2)) -> __#(X1,X2) p30: activate#(n__isList(X)) -> isList#(X) p31: activate#(n__isNeList(X)) -> isNeList#(X) p32: activate#(n__isPal(X)) -> isPal#(X) p33: activate#(n__a()) -> a#() p34: activate#(n__e()) -> e#() p35: activate#(n__i()) -> i#() p36: activate#(n__o()) -> o#() p37: activate#(n__u()) -> u#() and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p3, p4, p5, p6, p7, p8, p9, p11, p12, p13, p14, p15, p16, p17, p18, p19, p21, p22, p24, p25, p26, p27, p30, p31, p32} {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n__isPal(X)) -> isPal#(X) p3: isPal#(V) -> isNePal#(activate(V)) p4: isNePal#(n____(I,__(P,I))) -> activate#(P) p5: activate#(n__isNeList(X)) -> isNeList#(X) p6: isNeList#(n____(V1,V2)) -> activate#(V2) p7: activate#(n__isList(X)) -> isList#(X) p8: isList#(n____(V1,V2)) -> activate#(V2) p9: isList#(n____(V1,V2)) -> activate#(V1) p10: isList#(n____(V1,V2)) -> isList#(activate(V1)) p11: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p12: and#(tt(),X) -> activate#(X) p13: isList#(V) -> activate#(V) p14: isList#(V) -> isNeList#(activate(V)) p15: isNeList#(n____(V1,V2)) -> activate#(V1) p16: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p17: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p18: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p19: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p20: isNeList#(V) -> activate#(V) p21: isNePal#(n____(I,__(P,I))) -> activate#(I) p22: isNePal#(n____(I,__(P,I))) -> and#(isQid(activate(I)),n__isPal(activate(P))) p23: isNePal#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isPal#_A(x1) = ((1,0),(1,1)) x1 + (12,33) activate#_A(x1) = ((1,0),(1,1)) x1 + (5,33) n__isPal_A(x1) = x1 + (44,34) isNePal#_A(x1) = x1 + (8,34) activate_A(x1) = ((1,0),(1,1)) x1 + (3,67) n_____A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (22,7) ___A(x1,x2) = x1 + x2 + (25,0) n__isNeList_A(x1) = ((1,0),(1,0)) x1 + (5,1) isNeList#_A(x1) = x1 + (6,122) n__isList_A(x1) = ((1,0),(0,0)) x1 + (11,1) isList#_A(x1) = x1 + (10,61) and#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (2,34) isList_A(x1) = ((1,0),(1,0)) x1 + (11,78) tt_A() = (4,1) isNeList_A(x1) = ((1,0),(0,0)) x1 + (8,6) isQid_A(x1) = ((0,0),(1,0)) x1 + (5,64) isNePal_A(x1) = ((1,0),(1,1)) x1 + (7,68) and_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (1,1) nil_A() = (6,3) isPal_A(x1) = ((1,0),(0,0)) x1 + (45,68) n__nil_A() = (5,2) a_A() = (6,0) n__a_A() = (5,2) e_A() = (6,3) n__e_A() = (5,2) i_A() = (6,3) n__i_A() = (5,2) o_A() = (8,3) n__o_A() = (5,2) u_A() = (6,3) n__u_A() = (5,2) precedence: n__isPal = activate = n__isList = isList = tt = isNeList = isQid = isNePal = and = isPal > isNePal# = n____ = n__isNeList = nil = n__nil = a = n__a = e = n__e = i = n__i = o = n__o = u > isPal# = activate# = __ = isNeList# = isList# = and# = n__u partial status: pi(isPal#) = [] pi(activate#) = [] pi(n__isPal) = [] pi(isNePal#) = [1] pi(activate) = [] pi(n____) = [] pi(__) = [1, 2] pi(n__isNeList) = [] pi(isNeList#) = [] pi(n__isList) = [] pi(isList#) = [] pi(and#) = [] pi(isList) = [] pi(tt) = [] pi(isNeList) = [] pi(isQid) = [] pi(isNePal) = [] pi(and) = [] pi(nil) = [] pi(isPal) = [] pi(n__nil) = [] pi(a) = [] pi(n__a) = [] pi(e) = [] pi(n__e) = [] pi(i) = [] pi(n__i) = [] pi(o) = [] pi(n__o) = [] pi(u) = [] pi(n__u) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n__isPal(X)) -> isPal#(X) p3: isNePal#(n____(I,__(P,I))) -> activate#(P) p4: activate#(n__isNeList(X)) -> isNeList#(X) p5: isNeList#(n____(V1,V2)) -> activate#(V2) p6: activate#(n__isList(X)) -> isList#(X) p7: isList#(n____(V1,V2)) -> activate#(V2) p8: isList#(n____(V1,V2)) -> activate#(V1) p9: isList#(n____(V1,V2)) -> isList#(activate(V1)) p10: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p11: and#(tt(),X) -> activate#(X) p12: isList#(V) -> activate#(V) p13: isList#(V) -> isNeList#(activate(V)) p14: isNeList#(n____(V1,V2)) -> activate#(V1) p15: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p16: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p17: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p18: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p19: isNeList#(V) -> activate#(V) p20: isNePal#(n____(I,__(P,I))) -> activate#(I) p21: isNePal#(n____(I,__(P,I))) -> and#(isQid(activate(I)),n__isPal(activate(P))) p22: isNePal#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n__isList(X)) -> isList#(X) p3: isList#(V) -> isNeList#(activate(V)) p4: isNeList#(V) -> activate#(V) p5: activate#(n__isNeList(X)) -> isNeList#(X) p6: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p7: and#(tt(),X) -> activate#(X) p8: activate#(n__isPal(X)) -> isPal#(X) p9: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p10: isList#(V) -> activate#(V) p11: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p12: isList#(n____(V1,V2)) -> isList#(activate(V1)) p13: isList#(n____(V1,V2)) -> activate#(V1) p14: isList#(n____(V1,V2)) -> activate#(V2) p15: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p16: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p17: isNeList#(n____(V1,V2)) -> activate#(V1) p18: isNeList#(n____(V1,V2)) -> activate#(V2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isPal#_A(x1) = ((1,0),(0,0)) x1 + (39,1) activate#_A(x1) = x1 + (25,3) n__isList_A(x1) = ((1,0),(1,1)) x1 + (8,8) isList#_A(x1) = ((1,0),(1,1)) x1 + (32,9) isNeList#_A(x1) = x1 + (26,49) activate_A(x1) = x1 + (5,36) n__isNeList_A(x1) = ((1,0),(1,1)) x1 + (2,47) n_____A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (24,2) and#_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (24,4) isList_A(x1) = ((1,0),(0,0)) x1 + (13,7) tt_A() = (2,2) n__isPal_A(x1) = ((1,0),(0,0)) x1 + (40,5) isNeList_A(x1) = ((1,0),(0,0)) x1 + (6,6) isNePal_A(x1) = x1 + (4,1) isQid_A(x1) = (3,5) ___A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (28,1) and_A(x1,x2) = ((1,0),(0,0)) x2 + (6,5) nil_A() = (4,4) isPal_A(x1) = ((1,0),(0,0)) x1 + (41,38) n__nil_A() = (3,3) n__a_A() = (3,3) n__e_A() = (3,3) n__i_A() = (3,3) n__o_A() = (1,3) n__u_A() = (3,3) a_A() = (4,4) e_A() = (4,4) i_A() = (4,4) o_A() = (2,4) u_A() = (4,4) precedence: isPal# = __ > n__isPal = isPal > activate = n__isNeList = isList = isNeList = and > isQid > isNePal > n__isList = n____ = and# > activate# = isList# = isNeList# = tt = nil = n__nil = n__a = n__e = n__i = n__o = n__u = a = e = i = o = u partial status: pi(isPal#) = [] pi(activate#) = [] pi(n__isList) = [] pi(isList#) = [] pi(isNeList#) = [] pi(activate) = [] pi(n__isNeList) = [] pi(n____) = [2] pi(and#) = [] pi(isList) = [] pi(tt) = [] pi(n__isPal) = [] pi(isNeList) = [] pi(isNePal) = [] pi(isQid) = [] pi(__) = [] pi(and) = [] pi(nil) = [] pi(isPal) = [] pi(n__nil) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isList(X)) -> isList#(X) p2: isList#(V) -> isNeList#(activate(V)) p3: isNeList#(V) -> activate#(V) p4: activate#(n__isNeList(X)) -> isNeList#(X) p5: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p6: and#(tt(),X) -> activate#(X) p7: activate#(n__isPal(X)) -> isPal#(X) p8: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p9: isList#(V) -> activate#(V) p10: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p11: isList#(n____(V1,V2)) -> isList#(activate(V1)) p12: isList#(n____(V1,V2)) -> activate#(V1) p13: isList#(n____(V1,V2)) -> activate#(V2) p14: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p15: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p16: isNeList#(n____(V1,V2)) -> activate#(V1) p17: isNeList#(n____(V1,V2)) -> activate#(V2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isList(X)) -> isList#(X) p2: isList#(n____(V1,V2)) -> activate#(V2) p3: activate#(n__isNeList(X)) -> isNeList#(X) p4: isNeList#(n____(V1,V2)) -> activate#(V2) p5: isNeList#(n____(V1,V2)) -> activate#(V1) p6: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p7: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p8: and#(tt(),X) -> activate#(X) p9: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p10: isList#(n____(V1,V2)) -> activate#(V1) p11: isList#(n____(V1,V2)) -> isList#(activate(V1)) p12: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p13: isList#(V) -> activate#(V) p14: isList#(V) -> isNeList#(activate(V)) p15: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p16: isNeList#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = ((1,0),(1,0)) x1 + (3,2) n__isList_A(x1) = ((1,0),(0,0)) x1 + (13,52) isList#_A(x1) = ((1,0),(0,0)) x1 + (12,50) n_____A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (48,3) n__isNeList_A(x1) = ((1,0),(0,0)) x1 + (5,50) isNeList#_A(x1) = ((1,0),(1,0)) x1 + (4,1) activate_A(x1) = x1 + (7,54) and#_A(x1,x2) = ((1,0),(1,0)) x2 + (27,2) isNeList_A(x1) = ((1,0),(0,0)) x1 + (6,51) tt_A() = (2,1) isList_A(x1) = ((1,0),(0,0)) x1 + (14,53) isNePal_A(x1) = ((1,0),(0,0)) x1 + (11,5) isQid_A(x1) = (3,6) ___A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (49,2) and_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (6,4) n__isPal_A(x1) = ((1,0),(0,0)) x1 + (91,6) nil_A() = (4,3) isPal_A(x1) = ((1,0),(0,0)) x1 + (92,7) n__nil_A() = (3,2) n__a_A() = (3,2) n__e_A() = (3,2) n__i_A() = (1,2) n__o_A() = (3,2) n__u_A() = (3,2) a_A() = (4,3) e_A() = (4,3) i_A() = (2,3) o_A() = (4,3) u_A() = (4,3) precedence: activate# = isNeList# = activate = and# = isNePal = __ = and = n__isPal = isPal > isList# > n__nil = n__e = e > tt = isQid = n__o = o > n__isList = n__isNeList = isNeList = isList > n____ > nil > n__a > n__i = n__u = a = i = u partial status: pi(activate#) = [] pi(n__isList) = [] pi(isList#) = [] pi(n____) = [2] pi(n__isNeList) = [] pi(isNeList#) = [] pi(activate) = [] pi(and#) = [] pi(isNeList) = [] pi(tt) = [] pi(isList) = [] pi(isNePal) = [] pi(isQid) = [] pi(__) = [] pi(and) = [] pi(n__isPal) = [] pi(nil) = [] pi(isPal) = [] pi(n__nil) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isList#(n____(V1,V2)) -> activate#(V2) p2: activate#(n__isNeList(X)) -> isNeList#(X) p3: isNeList#(n____(V1,V2)) -> activate#(V2) p4: isNeList#(n____(V1,V2)) -> activate#(V1) p5: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p6: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p7: and#(tt(),X) -> activate#(X) p8: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p9: isList#(n____(V1,V2)) -> activate#(V1) p10: isList#(n____(V1,V2)) -> isList#(activate(V1)) p11: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p12: isList#(V) -> activate#(V) p13: isList#(V) -> isNeList#(activate(V)) p14: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p15: isNeList#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isList#(n____(V1,V2)) -> activate#(V2) p2: activate#(n__isNeList(X)) -> isNeList#(X) p3: isNeList#(V) -> activate#(V) p4: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p5: and#(tt(),X) -> activate#(X) p6: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p7: isList#(V) -> isNeList#(activate(V)) p8: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p9: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p10: isNeList#(n____(V1,V2)) -> activate#(V1) p11: isNeList#(n____(V1,V2)) -> activate#(V2) p12: isList#(V) -> activate#(V) p13: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p14: isList#(n____(V1,V2)) -> isList#(activate(V1)) p15: isList#(n____(V1,V2)) -> activate#(V1) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isList#_A(x1) = x1 + (8,40) n_____A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (54,61) activate#_A(x1) = x1 + (1,3) n__isNeList_A(x1) = x1 + (3,42) isNeList#_A(x1) = x1 + (2,19) and#_A(x1,x2) = ((1,0),(1,0)) x1 + x2 + (27,2) isList_A(x1) = x1 + (10,82) activate_A(x1) = x1 + (5,20) tt_A() = (2,2) isNeList_A(x1) = x1 + (4,61) n__isList_A(x1) = x1 + (6,63) isNePal_A(x1) = ((1,0),(1,0)) x1 + (6,13) isQid_A(x1) = (3,3) ___A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (58,62) and_A(x1,x2) = x2 + (6,101) n__isPal_A(x1) = ((1,0),(1,0)) x1 + (46,18) nil_A() = (4,1) isPal_A(x1) = ((1,0),(1,0)) x1 + (47,19) n__nil_A() = (3,3) n__a_A() = (1,1) n__e_A() = (3,3) n__i_A() = (3,3) n__o_A() = (3,3) n__u_A() = (3,3) a_A() = (5,2) e_A() = (4,4) i_A() = (4,4) o_A() = (4,4) u_A() = (4,4) precedence: n____ = isNeList# = activate = n__isList = isNePal = __ = and = isPal > isList# = activate# = n__isPal > isList = tt = isNeList = isQid > n__isNeList = and# > n__nil = n__i > nil = n__a = a > n__e = n__o = n__u = e = i = o = u partial status: pi(isList#) = [] pi(n____) = [] pi(activate#) = [1] pi(n__isNeList) = [] pi(isNeList#) = [] pi(and#) = [] pi(isList) = [] pi(activate) = [] pi(tt) = [] pi(isNeList) = [] pi(n__isList) = [] pi(isNePal) = [] pi(isQid) = [] pi(__) = [] pi(and) = [] pi(n__isPal) = [] pi(nil) = [] pi(isPal) = [] pi(n__nil) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNeList(X)) -> isNeList#(X) p2: isNeList#(V) -> activate#(V) p3: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p4: and#(tt(),X) -> activate#(X) p5: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p6: isList#(V) -> isNeList#(activate(V)) p7: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p8: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p9: isNeList#(n____(V1,V2)) -> activate#(V1) p10: isNeList#(n____(V1,V2)) -> activate#(V2) p11: isList#(V) -> activate#(V) p12: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p13: isList#(n____(V1,V2)) -> isList#(activate(V1)) p14: isList#(n____(V1,V2)) -> activate#(V1) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNeList(X)) -> isNeList#(X) p2: isNeList#(n____(V1,V2)) -> activate#(V2) p3: isNeList#(n____(V1,V2)) -> activate#(V1) p4: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p5: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p6: and#(tt(),X) -> activate#(X) p7: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p8: isList#(n____(V1,V2)) -> activate#(V1) p9: isList#(n____(V1,V2)) -> isList#(activate(V1)) p10: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p11: isList#(V) -> activate#(V) p12: isList#(V) -> isNeList#(activate(V)) p13: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p14: isNeList#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = ((1,0),(1,0)) x1 + (2,1) n__isNeList_A(x1) = x1 + (2,18) isNeList#_A(x1) = ((1,0),(1,0)) x1 + (3,1) n_____A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (21,32) activate_A(x1) = x1 + (6,25) and#_A(x1,x2) = ((1,0),(1,0)) x2 + (3,2) isNeList_A(x1) = ((1,0),(1,0)) x1 + (5,17) n__isList_A(x1) = ((1,0),(1,0)) x1 + (7,5) tt_A() = (3,0) isList#_A(x1) = ((1,0),(1,1)) x1 + (10,0) isList_A(x1) = ((1,0),(1,0)) x1 + (12,24) isNePal_A(x1) = x1 + (9,2) isQid_A(x1) = (4,66) ___A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (22,33) and_A(x1,x2) = x2 + (7,26) n__isPal_A(x1) = ((1,0),(0,0)) x1 + (38,27) nil_A() = (5,2) isPal_A(x1) = ((1,0),(0,0)) x1 + (39,28) n__nil_A() = (4,1) n__a_A() = (4,1) n__e_A() = (1,1) n__i_A() = (4,1) n__o_A() = (4,1) n__u_A() = (4,1) a_A() = (5,0) e_A() = (2,2) i_A() = (5,2) o_A() = (5,2) u_A() = (5,2) precedence: activate = isNeList = isList = and > and# > activate# = isNeList# > n____ = tt = __ > n__isList = isList# = isQid > nil > isNePal = n__isPal = isPal > n__isNeList = n__nil = n__a > n__e = n__i = n__o = n__u = a = e = i = o = u partial status: pi(activate#) = [] pi(n__isNeList) = [] pi(isNeList#) = [] pi(n____) = [] pi(activate) = [] pi(and#) = [] pi(isNeList) = [] pi(n__isList) = [] pi(tt) = [] pi(isList#) = [1] pi(isList) = [] pi(isNePal) = [] pi(isQid) = [] pi(__) = [2] pi(and) = [] pi(n__isPal) = [] pi(nil) = [] pi(isPal) = [] pi(n__nil) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNeList(X)) -> isNeList#(X) p2: isNeList#(n____(V1,V2)) -> activate#(V2) p3: isNeList#(n____(V1,V2)) -> activate#(V1) p4: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p5: and#(tt(),X) -> activate#(X) p6: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p7: isList#(n____(V1,V2)) -> activate#(V1) p8: isList#(n____(V1,V2)) -> isList#(activate(V1)) p9: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p10: isList#(V) -> activate#(V) p11: isList#(V) -> isNeList#(activate(V)) p12: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p13: isNeList#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNeList(X)) -> isNeList#(X) p2: isNeList#(V) -> activate#(V) p3: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p4: and#(tt(),X) -> activate#(X) p5: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p6: isList#(V) -> isNeList#(activate(V)) p7: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p8: isNeList#(n____(V1,V2)) -> activate#(V1) p9: isNeList#(n____(V1,V2)) -> activate#(V2) p10: isList#(V) -> activate#(V) p11: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p12: isList#(n____(V1,V2)) -> isList#(activate(V1)) p13: isList#(n____(V1,V2)) -> activate#(V1) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = ((1,0),(1,1)) x1 + (1,25) n__isNeList_A(x1) = ((1,0),(0,0)) x1 + (3,1) isNeList#_A(x1) = x1 + (2,30) n_____A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,0)) x2 + (11,24) and#_A(x1,x2) = ((1,0),(1,1)) x2 + (1,26) isList_A(x1) = ((1,0),(0,0)) x1 + (7,4) activate_A(x1) = ((1,0),(0,0)) x1 + (2,5) tt_A() = (0,1) isList#_A(x1) = ((1,0),(1,1)) x1 + (5,48) n__isList_A(x1) = ((1,0),(1,0)) x1 + (6,1) isNePal_A(x1) = ((1,0),(1,0)) x1 + (9,15) isQid_A(x1) = (3,38) ___A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,0)) x2 + (11,25) and_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (3,6) n__isPal_A(x1) = ((1,0),(0,0)) x1 + (25,1) n__a_A() = (1,2) n__e_A() = (1,2) n__i_A() = (1,2) n__o_A() = (1,2) n__u_A() = (0,2) nil_A() = (1,4) isNeList_A(x1) = ((1,0),(0,0)) x1 + (4,23) isPal_A(x1) = ((1,0),(0,0)) x1 + (27,2) n__nil_A() = (1,3) a_A() = (3,3) e_A() = (3,3) i_A() = (2,3) o_A() = (1,3) u_A() = (2,3) precedence: isList = activate = tt = isList# = n__isList = isNePal = __ = and = isNeList = isPal > isQid > activate# = isNeList# = and# > n__isNeList = n____ > n__isPal = n__a = n__u = a > n__e = e > n__i = i = o > n__o = u > nil = n__nil partial status: pi(activate#) = [1] pi(n__isNeList) = [] pi(isNeList#) = [1] pi(n____) = [] pi(and#) = [2] pi(isList) = [] pi(activate) = [] pi(tt) = [] pi(isList#) = [1] pi(n__isList) = [] pi(isNePal) = [] pi(isQid) = [] pi(__) = [] pi(and) = [] pi(n__isPal) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(nil) = [] pi(isNeList) = [] pi(isPal) = [] pi(n__nil) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(V) -> activate#(V) p2: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p3: and#(tt(),X) -> activate#(X) p4: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p5: isList#(V) -> isNeList#(activate(V)) p6: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p7: isNeList#(n____(V1,V2)) -> activate#(V1) p8: isNeList#(n____(V1,V2)) -> activate#(V2) p9: isList#(V) -> activate#(V) p10: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p11: isList#(n____(V1,V2)) -> isList#(activate(V1)) p12: isList#(n____(V1,V2)) -> activate#(V1) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p4, p5, p6, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p2: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p3: isList#(n____(V1,V2)) -> isList#(activate(V1)) p4: isList#(V) -> isNeList#(activate(V)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isNeList#_A(x1) = x1 + (1,2) n_____A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(0,0)) x2 + (20,12) activate_A(x1) = x1 + (2,5) isList#_A(x1) = x1 + (4,8) and_A(x1,x2) = x2 + (3,13) tt_A() = (1,6) isNePal_A(x1) = ((1,0),(0,0)) x1 + (4,3) isQid_A(x1) = ((1,0),(0,0)) x1 + (1,2) ___A(x1,x2) = x1 + x2 + (21,1) n__isPal_A(x1) = ((1,0),(0,0)) x1 + (6,0) n__a_A() = (2,7) n__e_A() = (2,7) n__i_A() = (2,1) n__o_A() = (2,7) n__u_A() = (2,0) nil_A() = (3,1) isList_A(x1) = ((1,0),(1,0)) x1 + (15,15) isNeList_A(x1) = ((1,0),(1,0)) x1 + (12,12) n__nil_A() = (2,1) n__isList_A(x1) = ((1,0),(1,0)) x1 + (14,16) n__isNeList_A(x1) = ((1,0),(1,0)) x1 + (11,11) isPal_A(x1) = ((1,0),(0,0)) x1 + (7,4) a_A() = (3,0) e_A() = (3,13) i_A() = (3,0) o_A() = (3,6) u_A() = (3,1) precedence: activate = and = n__a = n__e = n__i = isList = isNeList = e = i > isList# > isNeList# = n__isPal = n__o > n__u > nil = n__nil = n__isList > n__isNeList = a = o > u > n____ = tt = isNePal = isQid = __ = isPal partial status: pi(isNeList#) = [1] pi(n____) = [] pi(activate) = [] pi(isList#) = [] pi(and) = [] pi(tt) = [] pi(isNePal) = [] pi(isQid) = [] pi(__) = [1, 2] pi(n__isPal) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(nil) = [] pi(isList) = [] pi(isNeList) = [] pi(n__nil) = [] pi(n__isList) = [] pi(n__isNeList) = [] pi(isPal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p2: isList#(n____(V1,V2)) -> isList#(activate(V1)) p3: isList#(V) -> isNeList#(activate(V)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p2: isList#(V) -> isNeList#(activate(V)) p3: isList#(n____(V1,V2)) -> isList#(activate(V1)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isNeList#_A(x1) = ((1,0),(1,0)) x1 + (1,5) n_____A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (18,32) isList#_A(x1) = x1 + (7,9) activate_A(x1) = ((1,0),(1,1)) x1 + (5,24) and_A(x1,x2) = ((1,0),(0,0)) x2 + (6,1) tt_A() = (2,31) isNePal_A(x1) = ((1,0),(0,0)) x1 + (6,23) isQid_A(x1) = ((0,0),(1,0)) x1 + (3,27) ___A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (19,33) n__isPal_A(x1) = ((1,0),(0,0)) x1 + (25,85) n__a_A() = (1,1) n__e_A() = (3,30) n__i_A() = (5,30) n__o_A() = (1,1) n__u_A() = (3,32) nil_A() = (4,33) isList_A(x1) = ((1,0),(1,1)) x1 + (10,32) isNeList_A(x1) = x1 + (4,25) n__nil_A() = (3,32) n__isList_A(x1) = ((1,0),(1,0)) x1 + (6,1) n__isNeList_A(x1) = ((1,0),(1,0)) x1 + (1,26) isPal_A(x1) = ((1,0),(0,0)) x1 + (25,85) a_A() = (2,2) e_A() = (4,0) i_A() = (6,0) o_A() = (2,2) u_A() = (4,0) precedence: isList# = n__a = n__e > isNeList# = n____ = __ = n__i = n__u = nil = isNeList = n__nil > n__isPal = n__o = n__isNeList = isPal = e = i = o > and = tt = isNePal = isQid > n__isList > activate > isList = a = u partial status: pi(isNeList#) = [] pi(n____) = [] pi(isList#) = [1] pi(activate) = [1] pi(and) = [] pi(tt) = [] pi(isNePal) = [] pi(isQid) = [] pi(__) = [1, 2] pi(n__isPal) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(nil) = [] pi(isList) = [1] pi(isNeList) = [1] pi(n__nil) = [] pi(n__isList) = [] pi(n__isNeList) = [] pi(isPal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isList#(V) -> isNeList#(activate(V)) p2: isList#(n____(V1,V2)) -> isList#(activate(V1)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isList#(n____(V1,V2)) -> isList#(activate(V1)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isList#_A(x1) = ((0,0),(1,0)) x1 + (26,5) n_____A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (25,7) activate_A(x1) = ((1,0),(1,1)) x1 + (3,35) and_A(x1,x2) = ((1,0),(1,1)) x2 + (3,36) tt_A() = (2,34) isNePal_A(x1) = ((1,0),(1,0)) x1 + (4,1) isQid_A(x1) = (3,53) ___A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (26,68) n__isPal_A(x1) = ((1,0),(0,0)) x1 + (6,6) n__a_A() = (3,35) n__e_A() = (3,35) n__i_A() = (3,35) n__o_A() = (3,35) n__u_A() = (1,1) nil_A() = (31,1) isList_A(x1) = ((0,0),(1,0)) x1 + (27,58) isNeList_A(x1) = ((0,0),(1,0)) x1 + (27,54) n__nil_A() = (30,0) n__isList_A(x1) = ((0,0),(1,0)) x1 + (24,0) n__isNeList_A(x1) = ((0,0),(1,0)) x1 + (24,0) isPal_A(x1) = ((1,0),(1,0)) x1 + (8,5) a_A() = (4,36) e_A() = (4,36) i_A() = (4,36) o_A() = (4,0) u_A() = (2,2) precedence: isList# = activate = __ = n__isPal = n__e = n__i = isPal = e = i > n____ > n__o > nil > isList = n__nil = n__isList > tt > isNeList = n__isNeList > and = isNePal = n__a > n__u = a = o = u > isQid partial status: pi(isList#) = [] pi(n____) = [] pi(activate) = [] pi(and) = [] pi(tt) = [] pi(isNePal) = [] pi(isQid) = [] pi(__) = [] pi(n__isPal) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(nil) = [] pi(isList) = [] pi(isNeList) = [] pi(n__nil) = [] pi(n__isList) = [] pi(n__isNeList) = [] pi(isPal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) p2: __#(__(X,Y),Z) -> __#(Y,Z) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r21 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: __#_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,0),(1,0)) x2 + (1,1) ___A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (2,0) nil_A() = (1,1) n_____A(x1,x2) = (1,0) precedence: __ > __# = nil = n____ partial status: pi(__#) = [1] pi(__) = [] pi(nil) = [] pi(n____) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r21 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: __#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (1,2) ___A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (2,1) nil_A() = (1,1) n_____A(x1,x2) = (1,2) precedence: __# = __ = n____ > nil partial status: pi(__#) = [] pi(__) = [] pi(nil) = [] pi(n____) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.