YES We show the termination of the TRS R: U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),N) -> activate(N) U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) U42(tt(),M,N) -> s(plus(activate(N),activate(M))) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) plus(N,|0|()) -> U31(isNat(N),N) plus(N,s(M)) -> U41(isNat(M),M,N) |0|() -> n__0() plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) activate(n__0()) -> |0|() activate(n__plus(X1,X2)) -> plus(X1,X2) activate(n__s(X)) -> s(X) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> U12#(isNat(activate(V2))) p2: U11#(tt(),V2) -> isNat#(activate(V2)) p3: U11#(tt(),V2) -> activate#(V2) p4: U31#(tt(),N) -> activate#(N) p5: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p6: U41#(tt(),M,N) -> isNat#(activate(N)) p7: U41#(tt(),M,N) -> activate#(N) p8: U41#(tt(),M,N) -> activate#(M) p9: U42#(tt(),M,N) -> s#(plus(activate(N),activate(M))) p10: U42#(tt(),M,N) -> plus#(activate(N),activate(M)) p11: U42#(tt(),M,N) -> activate#(N) p12: U42#(tt(),M,N) -> activate#(M) p13: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p14: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p15: isNat#(n__plus(V1,V2)) -> activate#(V1) p16: isNat#(n__plus(V1,V2)) -> activate#(V2) p17: isNat#(n__s(V1)) -> U21#(isNat(activate(V1))) p18: isNat#(n__s(V1)) -> isNat#(activate(V1)) p19: isNat#(n__s(V1)) -> activate#(V1) p20: plus#(N,|0|()) -> U31#(isNat(N),N) p21: plus#(N,|0|()) -> isNat#(N) p22: plus#(N,s(M)) -> U41#(isNat(M),M,N) p23: plus#(N,s(M)) -> isNat#(M) p24: activate#(n__0()) -> |0|#() p25: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p26: activate#(n__s(X)) -> s#(X) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5, p6, p7, p8, p10, p11, p12, p13, p14, p15, p16, p18, p19, p20, p21, p22, p23, p25} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__s(V1)) -> activate#(V1) p3: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p4: plus#(N,s(M)) -> isNat#(M) p5: isNat#(n__s(V1)) -> isNat#(activate(V1)) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p10: U11#(tt(),V2) -> activate#(V2) p11: plus#(N,s(M)) -> U41#(isNat(M),M,N) p12: U41#(tt(),M,N) -> activate#(M) p13: U41#(tt(),M,N) -> activate#(N) p14: U41#(tt(),M,N) -> isNat#(activate(N)) p15: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p16: U42#(tt(),M,N) -> activate#(M) p17: U42#(tt(),M,N) -> activate#(N) p18: U42#(tt(),M,N) -> plus#(activate(N),activate(M)) p19: plus#(N,|0|()) -> isNat#(N) p20: plus#(N,|0|()) -> U31#(isNat(N),N) p21: U31#(tt(),N) -> activate#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: U11#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (3,6) tt_A() = (2,9) isNat#_A(x1) = x1 + (4,7) activate_A(x1) = x1 n__s_A(x1) = ((1,0),(0,0)) x1 + (5,0) activate#_A(x1) = ((1,0),(1,1)) x1 + (4,1) n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (0,12) plus#_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (4,8) s_A(x1) = ((1,0),(0,0)) x1 + (5,0) isNat_A(x1) = ((1,0),(1,1)) x1 + (0,18) U41#_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (9,8) U42#_A(x1,x2,x3) = ((1,0),(1,1)) x2 + ((1,0),(0,0)) x3 + (5,2) |0|_A() = (3,1) U31#_A(x1,x2) = ((1,0),(0,0)) x2 + (7,9) U42_A(x1,x2,x3) = ((1,0),(0,0)) x2 + x3 + (5,1) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (0,12) U12_A(x1) = ((1,0),(1,0)) x1 + (0,10) U31_A(x1,x2) = ((1,0),(0,0)) x2 + (2,0) U41_A(x1,x2,x3) = ((1,0),(0,0)) x2 + x3 + (5,2) U11_A(x1,x2) = ((1,0),(1,0)) x2 + (0,11) U21_A(x1) = (3,24) n__0_A() = (3,1) precedence: activate = |0| = plus = U31 > tt = n__plus = isNat = U12 = U11 = U21 = n__0 > U11# = isNat# = activate# = plus# = U41# = U42# = U31# > n__s = s = U42 = U41 partial status: pi(U11#) = [] pi(tt) = [] pi(isNat#) = [] pi(activate) = [] pi(n__s) = [] pi(activate#) = [] pi(n__plus) = [2] pi(plus#) = [] pi(s) = [] pi(isNat) = [] pi(U41#) = [] pi(U42#) = [] pi(|0|) = [] pi(U31#) = [] pi(U42) = [] pi(plus) = [] pi(U12) = [] pi(U31) = [] pi(U41) = [] pi(U11) = [] pi(U21) = [] pi(n__0) = [] The next rules are strictly ordered: p14 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__s(V1)) -> activate#(V1) p3: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p4: plus#(N,s(M)) -> isNat#(M) p5: isNat#(n__s(V1)) -> isNat#(activate(V1)) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p10: U11#(tt(),V2) -> activate#(V2) p11: plus#(N,s(M)) -> U41#(isNat(M),M,N) p12: U41#(tt(),M,N) -> activate#(M) p13: U41#(tt(),M,N) -> activate#(N) p14: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p15: U42#(tt(),M,N) -> activate#(M) p16: U42#(tt(),M,N) -> activate#(N) p17: U42#(tt(),M,N) -> plus#(activate(N),activate(M)) p18: plus#(N,|0|()) -> isNat#(N) p19: plus#(N,|0|()) -> U31#(isNat(N),N) p20: U31#(tt(),N) -> activate#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p3: U11#(tt(),V2) -> activate#(V2) p4: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p5: plus#(N,|0|()) -> U31#(isNat(N),N) p6: U31#(tt(),N) -> activate#(N) p7: plus#(N,|0|()) -> isNat#(N) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__s(V1)) -> isNat#(activate(V1)) p12: isNat#(n__s(V1)) -> activate#(V1) p13: plus#(N,s(M)) -> U41#(isNat(M),M,N) p14: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p15: U42#(tt(),M,N) -> plus#(activate(N),activate(M)) p16: plus#(N,s(M)) -> isNat#(M) p17: U42#(tt(),M,N) -> activate#(N) p18: U42#(tt(),M,N) -> activate#(M) p19: U41#(tt(),M,N) -> activate#(N) p20: U41#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: U11#_A(x1,x2) = ((1,0),(1,1)) x2 + (3,18) tt_A() = (1,7) isNat#_A(x1) = ((1,0),(1,1)) x1 + (0,15) activate_A(x1) = x1 + (0,2) n__plus_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (4,21) isNat_A(x1) = (1,35) activate#_A(x1) = ((1,0),(0,0)) x1 + (2,2) plus#_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (2,2) |0|_A() = (0,0) U31#_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (2,1) n__s_A(x1) = ((1,0),(1,0)) x1 + (3,8) s_A(x1) = ((1,0),(1,0)) x1 + (3,9) U41#_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (4,2) U42#_A(x1,x2,x3) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + ((1,0),(1,1)) x3 + (1,1) U42_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (7,13) plus_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (4,22) U12_A(x1) = ((0,0),(1,0)) x1 + (1,7) U31_A(x1,x2) = ((1,0),(1,1)) x2 + (1,3) U41_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (7,13) U11_A(x1,x2) = ((1,0),(1,0)) x1 + (0,21) U21_A(x1) = ((0,0),(1,0)) x1 + (1,7) n__0_A() = (0,0) precedence: U12 > U31 > plus > n__plus > tt > U11# = isNat# > isNat = plus# = U41# = U21 > U31# = U11 > activate# > U42# > U41 > activate = s = U42 > |0| = n__s = n__0 partial status: pi(U11#) = [] pi(tt) = [] pi(isNat#) = [1] pi(activate) = [1] pi(n__plus) = [] pi(isNat) = [] pi(activate#) = [] pi(plus#) = [2] pi(|0|) = [] pi(U31#) = [] pi(n__s) = [] pi(s) = [] pi(U41#) = [] pi(U42#) = [] pi(U42) = [] pi(plus) = [] pi(U12) = [] pi(U31) = [2] pi(U41) = [] pi(U11) = [] pi(U21) = [] pi(n__0) = [] The next rules are strictly ordered: p13 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p3: U11#(tt(),V2) -> activate#(V2) p4: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p5: plus#(N,|0|()) -> U31#(isNat(N),N) p6: U31#(tt(),N) -> activate#(N) p7: plus#(N,|0|()) -> isNat#(N) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__s(V1)) -> isNat#(activate(V1)) p12: isNat#(n__s(V1)) -> activate#(V1) p13: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p14: U42#(tt(),M,N) -> plus#(activate(N),activate(M)) p15: plus#(N,s(M)) -> isNat#(M) p16: U42#(tt(),M,N) -> activate#(N) p17: U42#(tt(),M,N) -> activate#(M) p18: U41#(tt(),M,N) -> activate#(N) p19: U41#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p15} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__s(V1)) -> activate#(V1) p3: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p4: plus#(N,s(M)) -> isNat#(M) p5: isNat#(n__s(V1)) -> isNat#(activate(V1)) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p10: U11#(tt(),V2) -> activate#(V2) p11: plus#(N,|0|()) -> isNat#(N) p12: plus#(N,|0|()) -> U31#(isNat(N),N) p13: U31#(tt(),N) -> activate#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: U11#_A(x1,x2) = ((1,0),(1,1)) x2 + (1,12) tt_A() = (0,9) isNat#_A(x1) = x1 + (1,11) activate_A(x1) = ((1,0),(1,1)) x1 n__s_A(x1) = ((1,0),(0,0)) x1 + (5,0) activate#_A(x1) = ((1,0),(0,0)) x1 + (1,11) n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(0,0)) x2 + (6,0) plus#_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(0,0)) x2 + (3,11) s_A(x1) = ((1,0),(0,0)) x1 + (5,5) isNat_A(x1) = (2,7) |0|_A() = (0,10) U31#_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (1,2) U42_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (11,6) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,0)) x2 + (6,5) U12_A(x1) = (0,10) U31_A(x1,x2) = ((1,0),(1,1)) x2 + (1,1) U41_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,1)) x3 + (11,9) U11_A(x1,x2) = (0,11) U21_A(x1) = (1,10) n__0_A() = (0,10) precedence: isNat > tt > U11# > isNat# = n__s = activate# = plus# = U31# > activate = |0| > s = U12 = U11 = n__0 > n__plus = plus = U31 = U41 = U21 > U42 partial status: pi(U11#) = [2] pi(tt) = [] pi(isNat#) = [1] pi(activate) = [1] pi(n__s) = [] pi(activate#) = [] pi(n__plus) = [1] pi(plus#) = [1] pi(s) = [] pi(isNat) = [] pi(|0|) = [] pi(U31#) = [] pi(U42) = [] pi(plus) = [1] pi(U12) = [] pi(U31) = [2] pi(U41) = [] pi(U11) = [] pi(U21) = [] pi(n__0) = [] The next rules are strictly ordered: p9 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__s(V1)) -> activate#(V1) p3: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p4: plus#(N,s(M)) -> isNat#(M) p5: isNat#(n__s(V1)) -> isNat#(activate(V1)) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: U11#(tt(),V2) -> activate#(V2) p10: plus#(N,|0|()) -> isNat#(N) p11: plus#(N,|0|()) -> U31#(isNat(N),N) p12: U31#(tt(),N) -> activate#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5, p6, p7, p8, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,|0|()) -> U31#(isNat(N),N) p4: U31#(tt(),N) -> activate#(N) p5: plus#(N,|0|()) -> isNat#(N) p6: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__s(V1)) -> isNat#(activate(V1)) p10: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isNat#_A(x1) = ((0,0),(1,0)) x1 + (1,4) n__s_A(x1) = ((1,0),(1,0)) x1 + (5,3) activate#_A(x1) = ((0,0),(1,0)) x1 + (1,6) n__plus_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (3,14) plus#_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (1,8) |0|_A() = (5,3) U31#_A(x1,x2) = ((0,0),(1,0)) x2 + (1,12) isNat_A(x1) = x1 + (4,0) tt_A() = (2,1) activate_A(x1) = x1 + (0,10) s_A(x1) = ((1,0),(1,0)) x1 + (5,5) U42_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (8,11) plus_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (3,15) U12_A(x1) = ((0,0),(1,0)) x1 + (3,1) U31_A(x1,x2) = x2 + (1,11) U41_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (8,12) U11_A(x1,x2) = ((1,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (3,9) U21_A(x1) = ((1,0),(1,1)) x1 + (2,1) n__0_A() = (5,2) precedence: n__s = plus# = |0| = activate = s = U42 = plus = U31 = U41 > U31# > isNat# > isNat > activate# = n__plus = tt = U12 = U11 = U21 = n__0 partial status: pi(isNat#) = [] pi(n__s) = [] pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [] pi(|0|) = [] pi(U31#) = [] pi(isNat) = [] pi(tt) = [] pi(activate) = [] pi(s) = [] pi(U42) = [] pi(plus) = [] pi(U12) = [] pi(U31) = [] pi(U41) = [] pi(U11) = [] pi(U21) = [] pi(n__0) = [] The next rules are strictly ordered: p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,|0|()) -> U31#(isNat(N),N) p4: U31#(tt(),N) -> activate#(N) p5: plus#(N,|0|()) -> isNat#(N) p6: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: isNat#(n__s(V1)) -> isNat#(activate(V1)) p9: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,s(M)) -> isNat#(M) p4: isNat#(n__s(V1)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> activate#(V1) p6: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p7: plus#(N,|0|()) -> isNat#(N) p8: plus#(N,|0|()) -> U31#(isNat(N),N) p9: U31#(tt(),N) -> activate#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isNat#_A(x1) = x1 + (0,1) n__s_A(x1) = ((1,0),(1,0)) x1 + (5,6) activate#_A(x1) = x1 + (0,1) n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (0,7) plus#_A(x1,x2) = x1 + x2 + (0,1) s_A(x1) = ((1,0),(1,0)) x1 + (5,8) activate_A(x1) = x1 + (0,4) |0|_A() = (0,5) U31#_A(x1,x2) = x2 + (0,2) isNat_A(x1) = (4,7) tt_A() = (1,3) U42_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (5,17) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (0,8) U12_A(x1) = (2,4) U31_A(x1,x2) = x2 + (0,4) U41_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (5,18) U11_A(x1,x2) = (3,1) U21_A(x1) = ((0,0),(1,0)) x1 + (2,1) n__0_A() = (0,5) precedence: |0| = U21 = n__0 > n__plus = activate = isNat = tt = U42 = plus = U12 = U31 = U41 = U11 > plus# = U31# > s > isNat# > activate# > n__s partial status: pi(isNat#) = [1] pi(n__s) = [] pi(activate#) = [1] pi(n__plus) = [] pi(plus#) = [2] pi(s) = [] pi(activate) = [1] pi(|0|) = [] pi(U31#) = [] pi(isNat) = [] pi(tt) = [] pi(U42) = [] pi(plus) = [1, 2] pi(U12) = [] pi(U31) = [2] pi(U41) = [] pi(U11) = [] pi(U21) = [] pi(n__0) = [] The next rules are strictly ordered: p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,s(M)) -> isNat#(M) p4: isNat#(n__s(V1)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> activate#(V1) p6: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p7: plus#(N,|0|()) -> isNat#(N) p8: U31#(tt(),N) -> activate#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,|0|()) -> isNat#(N) p4: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> activate#(V1) p6: isNat#(n__s(V1)) -> isNat#(activate(V1)) p7: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isNat#_A(x1) = ((1,0),(0,0)) x1 + (6,0) n__s_A(x1) = ((1,0),(0,0)) x1 + (7,2) activate#_A(x1) = ((1,0),(0,0)) x1 + (1,1) n__plus_A(x1,x2) = x1 + x2 + (2,1) plus#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (2,1) |0|_A() = (4,11) activate_A(x1) = ((1,0),(1,1)) x1 + (0,6) s_A(x1) = ((1,0),(0,0)) x1 + (7,3) U12_A(x1) = ((1,0),(1,0)) x1 + (0,5) tt_A() = (3,7) U11_A(x1,x2) = (3,9) isNat_A(x1) = (3,10) U21_A(x1) = (3,8) U42_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (9,4) plus_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (2,3) U31_A(x1,x2) = ((1,0),(1,1)) x2 + (5,12) U41_A(x1,x2,x3) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (6,5) n__0_A() = (4,6) precedence: activate = isNat = plus = U31 = U41 > |0| = s = U42 > isNat# = n__s = activate# = plus# > n__plus = U12 = tt = U11 = U21 = n__0 partial status: pi(isNat#) = [] pi(n__s) = [] pi(activate#) = [] pi(n__plus) = [2] pi(plus#) = [] pi(|0|) = [] pi(activate) = [] pi(s) = [] pi(U12) = [] pi(tt) = [] pi(U11) = [] pi(isNat) = [] pi(U21) = [] pi(U42) = [] pi(plus) = [] pi(U31) = [] pi(U41) = [] pi(n__0) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,|0|()) -> isNat#(N) p4: isNat#(n__plus(V1,V2)) -> activate#(V1) p5: isNat#(n__s(V1)) -> isNat#(activate(V1)) p6: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,s(M)) -> isNat#(M) p4: isNat#(n__s(V1)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> activate#(V1) p6: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isNat#_A(x1) = ((1,0),(0,0)) x1 + (11,11) n__s_A(x1) = x1 + (12,2) activate#_A(x1) = ((1,0),(1,1)) x1 + (11,1) n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,0)) x2 + (13,4) plus#_A(x1,x2) = x1 + ((1,0),(1,0)) x2 + (2,1) s_A(x1) = x1 + (12,3) activate_A(x1) = x1 + (0,3) |0|_A() = (10,15) U12_A(x1) = (1,17) tt_A() = (0,16) U11_A(x1,x2) = (12,19) isNat_A(x1) = x1 + (11,14) U21_A(x1) = (1,17) U42_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,1)) x3 + (25,12) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,0)) x2 + (13,5) U31_A(x1,x2) = x2 + (11,1) U41_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,1)) x3 + (25,16) n__0_A() = (10,13) precedence: activate > s = U42 = plus = U31 = U41 > U11 = isNat > |0| = n__0 > n__plus > isNat# > activate# = plus# = U12 = tt > n__s = U21 partial status: pi(isNat#) = [] pi(n__s) = [] pi(activate#) = [1] pi(n__plus) = [1] pi(plus#) = [1] pi(s) = [1] pi(activate) = [] pi(|0|) = [] pi(U12) = [] pi(tt) = [] pi(U11) = [] pi(isNat) = [1] pi(U21) = [] pi(U42) = [] pi(plus) = [1] pi(U31) = [] pi(U41) = [] pi(n__0) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,s(M)) -> isNat#(M) p4: isNat#(n__s(V1)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> activate#(V1) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,s(M)) -> isNat#(M) p4: isNat#(n__plus(V1,V2)) -> activate#(V1) p5: isNat#(n__s(V1)) -> isNat#(activate(V1)) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isNat#_A(x1) = ((1,0),(1,1)) x1 + (1,1) n__s_A(x1) = ((1,0),(0,0)) x1 + (12,2) activate#_A(x1) = ((1,0),(1,1)) x1 + (1,3) n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,0)) x2 + (9,4) plus#_A(x1,x2) = ((1,0),(1,1)) x2 + (1,3) s_A(x1) = ((1,0),(0,0)) x1 + (12,14) activate_A(x1) = x1 + (0,13) U12_A(x1) = ((1,0),(1,0)) x1 + (8,1) tt_A() = (8,0) U11_A(x1,x2) = ((1,0),(1,0)) x2 + (10,3) isNat_A(x1) = x1 + (1,8) U21_A(x1) = (9,1) U42_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (21,19) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,0)) x2 + (9,5) U31_A(x1,x2) = ((0,0),(1,0)) x1 + x2 + (1,9) U41_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((1,0),(0,0)) x2 + x3 + (21,12) n__0_A() = (9,0) |0|_A() = (9,9) precedence: isNat# = activate# > plus# = |0| > n__s = s = activate = U12 = U42 = plus = U31 = U41 > n__plus > n__0 > tt = U11 = isNat = U21 partial status: pi(isNat#) = [1] pi(n__s) = [] pi(activate#) = [] pi(n__plus) = [1] pi(plus#) = [] pi(s) = [] pi(activate) = [1] pi(U12) = [] pi(tt) = [] pi(U11) = [] pi(isNat) = [] pi(U21) = [] pi(U42) = [] pi(plus) = [1] pi(U31) = [2] pi(U41) = [] pi(n__0) = [] pi(|0|) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,s(M)) -> isNat#(M) p4: isNat#(n__s(V1)) -> isNat#(activate(V1)) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,s(M)) -> isNat#(M) p4: isNat#(n__s(V1)) -> isNat#(activate(V1)) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isNat#_A(x1) = ((1,0),(0,0)) x1 + (1,2) n__s_A(x1) = ((1,0),(0,0)) x1 + (6,4) activate#_A(x1) = ((1,0),(1,0)) x1 + (1,1) n__plus_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (7,1) plus#_A(x1,x2) = ((1,0),(1,0)) x2 + (1,2) s_A(x1) = ((1,0),(0,0)) x1 + (6,5) activate_A(x1) = ((1,0),(1,1)) x1 + (0,3) U12_A(x1) = ((1,0),(0,0)) x1 + (3,1) tt_A() = (4,9) U11_A(x1,x2) = ((1,0),(0,0)) x2 + (6,2) isNat_A(x1) = x1 + (2,12) U21_A(x1) = (5,8) U42_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (13,6) plus_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (7,8) U31_A(x1,x2) = ((1,0),(0,0)) x2 + (4,4) U41_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (13,7) n__0_A() = (3,10) |0|_A() = (3,11) precedence: plus = U31 > U42 = U41 = n__0 > n__s = s = activate = isNat = U21 > U12 = tt > n__plus = |0| > isNat# > activate# = plus# > U11 partial status: pi(isNat#) = [] pi(n__s) = [] pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [] pi(s) = [] pi(activate) = [1] pi(U12) = [] pi(tt) = [] pi(U11) = [] pi(isNat) = [] pi(U21) = [] pi(U42) = [] pi(plus) = [] pi(U31) = [] pi(U41) = [] pi(n__0) = [] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p2: plus#(N,s(M)) -> isNat#(M) p3: isNat#(n__s(V1)) -> isNat#(activate(V1)) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> isNat#(activate(V1)) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isNat#_A(x1) = ((1,0),(1,0)) x1 + (1,1) n__s_A(x1) = ((1,0),(1,0)) x1 + (5,2) activate_A(x1) = x1 + (0,9) U12_A(x1) = ((0,0),(1,0)) x1 + (9,8) tt_A() = (8,0) U11_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,1)) x2 + (2,8) isNat_A(x1) = ((1,0),(1,0)) x1 + (1,12) U21_A(x1) = ((1,0),(1,0)) x1 + (1,2) U42_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (9,10) s_A(x1) = ((1,0),(1,0)) x1 + (5,5) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (4,11) U31_A(x1,x2) = ((1,0),(1,1)) x2 + (10,14) U41_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (9,3) n__0_A() = (9,5) n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (4,10) |0|_A() = (9,13) precedence: n__s = activate = tt = U11 = isNat = U21 = U42 = s = plus = U31 = U41 > isNat# > U12 = n__0 = n__plus = |0| partial status: pi(isNat#) = [] pi(n__s) = [] pi(activate) = [] pi(U12) = [] pi(tt) = [] pi(U11) = [] pi(isNat) = [] pi(U21) = [] pi(U42) = [] pi(s) = [] pi(plus) = [] pi(U31) = [] pi(U41) = [] pi(n__0) = [] pi(n__plus) = [2] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.