YES We show the termination of the TRS R: U11(tt(),N) -> activate(N) U21(tt(),M,N) -> s(plus(activate(N),activate(M))) and(tt(),X) -> activate(X) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) isNat(n__s(V1)) -> isNat(activate(V1)) plus(N,|0|()) -> U11(isNat(N),N) plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) |0|() -> n__0() plus(X1,X2) -> n__plus(X1,X2) isNat(X) -> n__isNat(X) s(X) -> n__s(X) activate(n__0()) -> |0|() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__isNat(X)) -> isNat(X) activate(n__s(X)) -> s(activate(X)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: U21#(tt(),M,N) -> s#(plus(activate(N),activate(M))) p3: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p4: U21#(tt(),M,N) -> activate#(N) p5: U21#(tt(),M,N) -> activate#(M) p6: and#(tt(),X) -> activate#(X) p7: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__s(V1)) -> isNat#(activate(V1)) p12: isNat#(n__s(V1)) -> activate#(V1) p13: plus#(N,|0|()) -> U11#(isNat(N),N) p14: plus#(N,|0|()) -> isNat#(N) p15: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p16: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p17: plus#(N,s(M)) -> isNat#(M) p18: activate#(n__0()) -> |0|#() p19: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p20: activate#(n__plus(X1,X2)) -> activate#(X1) p21: activate#(n__plus(X1,X2)) -> activate#(X2) p22: activate#(n__isNat(X)) -> isNat#(X) p23: activate#(n__s(X)) -> s#(activate(X)) p24: activate#(n__s(X)) -> activate#(X) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p19, p20, p21, p22, p24} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__isNat(X)) -> isNat#(X) p4: isNat#(n__s(V1)) -> activate#(V1) p5: activate#(n__plus(X1,X2)) -> activate#(X2) p6: activate#(n__plus(X1,X2)) -> activate#(X1) p7: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p8: plus#(N,s(M)) -> isNat#(M) p9: isNat#(n__s(V1)) -> isNat#(activate(V1)) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__plus(V1,V2)) -> activate#(V1) p12: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p13: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p14: and#(tt(),X) -> activate#(X) p15: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p16: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p17: U21#(tt(),M,N) -> activate#(M) p18: U21#(tt(),M,N) -> activate#(N) p19: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p20: plus#(N,|0|()) -> isNat#(N) p21: plus#(N,|0|()) -> U11#(isNat(N),N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: U11#_A(x1,x2) = ((1,0),(1,1)) x2 + (3,17) tt_A() = (1,27) activate#_A(x1) = ((1,0),(1,1)) x1 + (2,16) n__s_A(x1) = ((1,0),(0,0)) x1 + (2,6) n__isNat_A(x1) = ((1,0),(0,0)) x1 + (5,20) isNat#_A(x1) = ((1,0),(0,0)) x1 + (6,19) n__plus_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,1)) x2 + (14,6) plus#_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (15,7) activate_A(x1) = ((1,0),(1,1)) x1 + (0,7) s_A(x1) = ((1,0),(0,0)) x1 + (2,14) and#_A(x1,x2) = ((1,0),(0,0)) x2 + (10,20) isNat_A(x1) = ((1,0),(0,0)) x1 + (5,29) U21#_A(x1,x2,x3) = ((1,0),(1,1)) x2 + ((1,0),(0,0)) x3 + (16,15) and_A(x1,x2) = x2 + (13,8) |0|_A() = (0,11) U11_A(x1,x2) = ((1,0),(0,0)) x2 + (1,8) U21_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (16,15) plus_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,1)) x2 + (14,19) n__0_A() = (0,11) precedence: |0| = n__0 > n__isNat = isNat > U21# > U11# = activate# = isNat# = plus# = and# > and > n__plus = activate = s = U21 = plus > tt = n__s = U11 partial status: pi(U11#) = [] pi(tt) = [] pi(activate#) = [] pi(n__s) = [] pi(n__isNat) = [] pi(isNat#) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [1] pi(s) = [] pi(and#) = [] pi(isNat) = [] pi(U21#) = [2] pi(and) = [2] pi(|0|) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [2] pi(n__0) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__isNat(X)) -> isNat#(X) p3: isNat#(n__s(V1)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> activate#(X2) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p7: plus#(N,s(M)) -> isNat#(M) p8: isNat#(n__s(V1)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> activate#(V2) p10: isNat#(n__plus(V1,V2)) -> activate#(V1) p11: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p12: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p13: and#(tt(),X) -> activate#(X) p14: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p15: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p16: U21#(tt(),M,N) -> activate#(M) p17: U21#(tt(),M,N) -> activate#(N) p18: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p19: plus#(N,|0|()) -> isNat#(N) p20: plus#(N,|0|()) -> U11#(isNat(N),N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> U11#(isNat(N),N) p4: plus#(N,|0|()) -> isNat#(N) p5: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p6: and#(tt(),X) -> activate#(X) p7: activate#(n__plus(X1,X2)) -> activate#(X1) p8: activate#(n__plus(X1,X2)) -> activate#(X2) p9: activate#(n__isNat(X)) -> isNat#(X) p10: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p11: isNat#(n__plus(V1,V2)) -> activate#(V1) p12: isNat#(n__plus(V1,V2)) -> activate#(V2) p13: isNat#(n__s(V1)) -> isNat#(activate(V1)) p14: isNat#(n__s(V1)) -> activate#(V1) p15: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p16: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p17: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p18: plus#(N,s(M)) -> isNat#(M) p19: U21#(tt(),M,N) -> activate#(N) p20: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: U11#_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (7,75) tt_A() = (5,43) activate#_A(x1) = ((1,0),(0,0)) x1 + (6,51) n__plus_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + (25,0) plus#_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (4,34) activate_A(x1) = ((1,0),(1,1)) x1 + (0,15) |0|_A() = (4,45) isNat_A(x1) = ((1,0),(0,0)) x1 + (5,44) isNat#_A(x1) = ((1,0),(1,1)) x1 + (7,28) and#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (2,47) n__isNat_A(x1) = ((1,0),(0,0)) x1 + (5,27) n__s_A(x1) = x1 + (13,1) s_A(x1) = x1 + (13,11) U21#_A(x1,x2,x3) = ((1,0),(1,1)) x2 + ((1,0),(0,0)) x3 + (12,50) and_A(x1,x2) = x2 + (7,16) U11_A(x1,x2) = ((1,0),(0,0)) x2 + (5,16) U21_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (38,25) plus_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (25,13) n__0_A() = (4,44) precedence: n__plus > and > U11# = activate# = plus# = and# = U21# > activate = isNat = s = U11 = plus > tt > n__s > U21 > |0| = n__0 > isNat# > n__isNat partial status: pi(U11#) = [] pi(tt) = [] pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [] pi(|0|) = [] pi(isNat) = [] pi(isNat#) = [1] pi(and#) = [] pi(n__isNat) = [] pi(n__s) = [] pi(s) = [] pi(U21#) = [2] pi(and) = [2] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p10 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> U11#(isNat(N),N) p4: plus#(N,|0|()) -> isNat#(N) p5: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p6: and#(tt(),X) -> activate#(X) p7: activate#(n__plus(X1,X2)) -> activate#(X1) p8: activate#(n__plus(X1,X2)) -> activate#(X2) p9: activate#(n__isNat(X)) -> isNat#(X) p10: isNat#(n__plus(V1,V2)) -> activate#(V1) p11: isNat#(n__plus(V1,V2)) -> activate#(V2) p12: isNat#(n__s(V1)) -> isNat#(activate(V1)) p13: isNat#(n__s(V1)) -> activate#(V1) p14: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p15: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p16: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p17: plus#(N,s(M)) -> isNat#(M) p18: U21#(tt(),M,N) -> activate#(N) p19: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__isNat(X)) -> isNat#(X) p3: isNat#(n__s(V1)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> activate#(X2) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p7: plus#(N,s(M)) -> isNat#(M) p8: isNat#(n__s(V1)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> activate#(V2) p10: isNat#(n__plus(V1,V2)) -> activate#(V1) p11: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p12: and#(tt(),X) -> activate#(X) p13: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p14: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p15: U21#(tt(),M,N) -> activate#(M) p16: U21#(tt(),M,N) -> activate#(N) p17: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p18: plus#(N,|0|()) -> isNat#(N) p19: plus#(N,|0|()) -> U11#(isNat(N),N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: U11#_A(x1,x2) = ((1,0),(1,1)) x2 + (16,20) tt_A() = (14,1) activate#_A(x1) = x1 + (15,17) n__isNat_A(x1) = ((1,0),(1,0)) x1 + (7,4) isNat#_A(x1) = x1 + (16,20) n__s_A(x1) = ((1,0),(0,0)) x1 + (6,1) n__plus_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (16,0) plus#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,1)) x2 + (27,1) activate_A(x1) = x1 + (0,15) s_A(x1) = ((1,0),(0,0)) x1 + (6,12) and#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (18,18) isNat_A(x1) = ((1,0),(1,0)) x1 + (7,11) U21#_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((1,0),(1,1)) x2 + ((1,0),(0,0)) x3 + (28,12) and_A(x1,x2) = ((0,0),(1,0)) x1 + x2 + (1,2) |0|_A() = (15,3) U11_A(x1,x2) = ((1,0),(0,0)) x2 + (16,1) U21_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (22,13) plus_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (16,14) n__0_A() = (15,2) precedence: n__plus = U21# = |0| = plus = n__0 > tt = activate# = n__isNat = isNat# = n__s = plus# = activate = s = and# = isNat = and = U11 = U21 > U11# partial status: pi(U11#) = [] pi(tt) = [] pi(activate#) = [] pi(n__isNat) = [] pi(isNat#) = [] pi(n__s) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [] pi(s) = [] pi(and#) = [] pi(isNat) = [] pi(U21#) = [] pi(and) = [] pi(|0|) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNat(X)) -> isNat#(X) p2: isNat#(n__s(V1)) -> activate#(V1) p3: activate#(n__plus(X1,X2)) -> activate#(X2) p4: activate#(n__plus(X1,X2)) -> activate#(X1) p5: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p6: plus#(N,s(M)) -> isNat#(M) p7: isNat#(n__s(V1)) -> isNat#(activate(V1)) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p11: and#(tt(),X) -> activate#(X) p12: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p13: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p14: U21#(tt(),M,N) -> activate#(M) p15: U21#(tt(),M,N) -> activate#(N) p16: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p17: plus#(N,|0|()) -> isNat#(N) p18: plus#(N,|0|()) -> U11#(isNat(N),N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNat(X)) -> isNat#(X) p2: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p3: and#(tt(),X) -> activate#(X) p4: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p5: plus#(N,|0|()) -> isNat#(N) p6: isNat#(n__plus(V1,V2)) -> activate#(V1) p7: activate#(n__plus(X1,X2)) -> activate#(X1) p8: activate#(n__plus(X1,X2)) -> activate#(X2) p9: isNat#(n__plus(V1,V2)) -> activate#(V2) p10: isNat#(n__s(V1)) -> isNat#(activate(V1)) p11: isNat#(n__s(V1)) -> activate#(V1) p12: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p13: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p14: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p15: plus#(N,s(M)) -> isNat#(M) p16: U21#(tt(),M,N) -> activate#(N) p17: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = ((1,0),(1,1)) x1 + (12,2) n__isNat_A(x1) = ((1,0),(0,0)) x1 isNat#_A(x1) = x1 + (1,4) n__plus_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + (18,0) and#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (13,3) isNat_A(x1) = ((1,0),(0,0)) x1 + (0,5) activate_A(x1) = ((1,0),(1,1)) x1 + (0,6) tt_A() = (0,1) plus#_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(0,0)) x2 + (2,15) |0|_A() = (0,6) n__s_A(x1) = ((1,0),(0,0)) x1 + (14,11) s_A(x1) = ((1,0),(0,0)) x1 + (14,12) U21#_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(1,1)) x3 + (15,13) and_A(x1,x2) = ((1,0),(1,1)) x2 + (17,7) U11_A(x1,x2) = ((1,0),(0,0)) x2 + (1,0) U21_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (32,13) plus_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + (18,0) n__0_A() = (0,2) precedence: n__isNat = n__plus = isNat = and = U11 = plus > activate > plus# = U21# > U21 > tt > and# = n__s = s > n__0 > isNat# > activate# = |0| partial status: pi(activate#) = [1] pi(n__isNat) = [] pi(isNat#) = [] pi(n__plus) = [] pi(and#) = [2] pi(isNat) = [] pi(activate) = [1] pi(tt) = [] pi(plus#) = [] pi(|0|) = [] pi(n__s) = [] pi(s) = [] pi(U21#) = [] pi(and) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p2: and#(tt(),X) -> activate#(X) p3: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p4: plus#(N,|0|()) -> isNat#(N) p5: isNat#(n__plus(V1,V2)) -> activate#(V1) p6: activate#(n__plus(X1,X2)) -> activate#(X1) p7: activate#(n__plus(X1,X2)) -> activate#(X2) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__s(V1)) -> isNat#(activate(V1)) p10: isNat#(n__s(V1)) -> activate#(V1) p11: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p12: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p13: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p14: plus#(N,s(M)) -> isNat#(M) p15: U21#(tt(),M,N) -> activate#(N) p16: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p2: and#(tt(),X) -> activate#(X) p3: activate#(n__plus(X1,X2)) -> activate#(X2) p4: activate#(n__plus(X1,X2)) -> activate#(X1) p5: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p6: plus#(N,s(M)) -> isNat#(M) p7: isNat#(n__s(V1)) -> activate#(V1) p8: isNat#(n__s(V1)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> activate#(V2) p10: isNat#(n__plus(V1,V2)) -> activate#(V1) p11: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p12: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p13: U21#(tt(),M,N) -> activate#(M) p14: U21#(tt(),M,N) -> activate#(N) p15: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p16: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isNat#_A(x1) = ((1,0),(0,0)) x1 + (16,2) n__plus_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (18,4) and#_A(x1,x2) = ((1,0),(0,0)) x2 + (6,2) isNat_A(x1) = ((0,0),(1,0)) x1 + (14,34) activate_A(x1) = ((1,0),(1,1)) x1 + (0,3) n__isNat_A(x1) = ((0,0),(1,0)) x1 + (14,34) tt_A() = (4,12) activate#_A(x1) = ((1,0),(0,0)) x1 + (5,8) plus#_A(x1,x2) = x1 + x2 + (2,1) s_A(x1) = ((1,0),(0,0)) x1 + (30,0) n__s_A(x1) = ((1,0),(0,0)) x1 + (30,0) U21#_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((1,0),(1,1)) x2 + ((1,0),(1,1)) x3 + (31,5) and_A(x1,x2) = ((1,0),(1,1)) x2 + (0,3) |0|_A() = (15,13) U11_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 U21_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (48,34) plus_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (18,5) n__0_A() = (15,13) precedence: s = n__s = |0| = U21 = n__0 > isNat# = and# = isNat > activate = and > n__plus = plus# = U21# = U11 = plus > tt = activate# > n__isNat partial status: pi(isNat#) = [] pi(n__plus) = [] pi(and#) = [] pi(isNat) = [] pi(activate) = [1] pi(n__isNat) = [] pi(tt) = [] pi(activate#) = [] pi(plus#) = [2] pi(s) = [] pi(n__s) = [] pi(U21#) = [] pi(and) = [2] pi(|0|) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [1, 2] pi(n__0) = [] The next rules are strictly ordered: p14 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p2: and#(tt(),X) -> activate#(X) p3: activate#(n__plus(X1,X2)) -> activate#(X2) p4: activate#(n__plus(X1,X2)) -> activate#(X1) p5: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p6: plus#(N,s(M)) -> isNat#(M) p7: isNat#(n__s(V1)) -> activate#(V1) p8: isNat#(n__s(V1)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> activate#(V2) p10: isNat#(n__plus(V1,V2)) -> activate#(V1) p11: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p12: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p13: U21#(tt(),M,N) -> activate#(M) p14: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p15: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p2: and#(tt(),X) -> activate#(X) p3: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p4: plus#(N,|0|()) -> isNat#(N) p5: isNat#(n__plus(V1,V2)) -> activate#(V1) p6: activate#(n__plus(X1,X2)) -> activate#(X1) p7: activate#(n__plus(X1,X2)) -> activate#(X2) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__s(V1)) -> isNat#(activate(V1)) p10: isNat#(n__s(V1)) -> activate#(V1) p11: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p12: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p13: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p14: plus#(N,s(M)) -> isNat#(M) p15: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isNat#_A(x1) = ((1,0),(0,0)) x1 + (1,15) n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (16,10) and#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (8,1) isNat_A(x1) = x1 + (4,11) activate_A(x1) = ((1,0),(1,1)) x1 n__isNat_A(x1) = x1 + (4,8) tt_A() = (14,12) activate#_A(x1) = ((1,0),(0,0)) x1 + (17,14) plus#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (15,13) |0|_A() = (11,14) n__s_A(x1) = ((1,0),(0,0)) x1 + (18,0) s_A(x1) = ((1,0),(0,0)) x1 + (18,0) U21#_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (19,1) and_A(x1,x2) = x1 + x2 + (1,1) U11_A(x1,x2) = ((1,0),(1,1)) x2 + (1,15) U21_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (34,12) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (16,11) n__0_A() = (11,13) precedence: n__plus = isNat = activate = n__isNat = |0| = s = and = U11 = U21 = plus = n__0 > n__s > tt > isNat# = and# = activate# = plus# = U21# partial status: pi(isNat#) = [] pi(n__plus) = [] pi(and#) = [] pi(isNat) = [] pi(activate) = [] pi(n__isNat) = [] pi(tt) = [] pi(activate#) = [] pi(plus#) = [] pi(|0|) = [] pi(n__s) = [] pi(s) = [] pi(U21#) = [] pi(and) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p9 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p2: and#(tt(),X) -> activate#(X) p3: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p4: plus#(N,|0|()) -> isNat#(N) p5: isNat#(n__plus(V1,V2)) -> activate#(V1) p6: activate#(n__plus(X1,X2)) -> activate#(X1) p7: activate#(n__plus(X1,X2)) -> activate#(X2) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__s(V1)) -> activate#(V1) p10: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p11: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p12: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p13: plus#(N,s(M)) -> isNat#(M) p14: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p2: and#(tt(),X) -> activate#(X) p3: activate#(n__plus(X1,X2)) -> activate#(X2) p4: activate#(n__plus(X1,X2)) -> activate#(X1) p5: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p6: plus#(N,s(M)) -> isNat#(M) p7: isNat#(n__s(V1)) -> activate#(V1) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p11: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p12: U21#(tt(),M,N) -> activate#(M) p13: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p14: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isNat#_A(x1) = ((1,0),(1,0)) x1 + (23,2) n__plus_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (8,5) and#_A(x1,x2) = ((1,0),(1,0)) x2 + (15,3) isNat_A(x1) = ((1,0),(1,0)) x1 + (1,9) activate_A(x1) = x1 + (0,6) n__isNat_A(x1) = ((1,0),(1,0)) x1 + (1,6) tt_A() = (9,1) activate#_A(x1) = ((1,0),(1,0)) x1 + (14,2) plus#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (10,4) s_A(x1) = ((1,0),(0,0)) x1 + (13,3) n__s_A(x1) = ((1,0),(0,0)) x1 + (13,1) U21#_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (15,5) and_A(x1,x2) = x2 + (1,10) |0|_A() = (24,8) U11_A(x1,x2) = ((1,0),(1,0)) x2 + (1,7) U21_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (21,4) plus_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (8,6) n__0_A() = (24,3) precedence: U11 > isNat# = isNat = activate = plus# = U21# > and > n__plus = n__isNat = s = n__s = U21 = plus > and# = tt = activate# > |0| = n__0 partial status: pi(isNat#) = [] pi(n__plus) = [] pi(and#) = [] pi(isNat) = [] pi(activate) = [1] pi(n__isNat) = [] pi(tt) = [] pi(activate#) = [] pi(plus#) = [] pi(s) = [] pi(n__s) = [] pi(U21#) = [] pi(and) = [] pi(|0|) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p2: and#(tt(),X) -> activate#(X) p3: activate#(n__plus(X1,X2)) -> activate#(X1) p4: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p5: plus#(N,s(M)) -> isNat#(M) p6: isNat#(n__s(V1)) -> activate#(V1) p7: isNat#(n__plus(V1,V2)) -> activate#(V2) p8: isNat#(n__plus(V1,V2)) -> activate#(V1) p9: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p10: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p11: U21#(tt(),M,N) -> activate#(M) p12: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p13: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p2: and#(tt(),X) -> activate#(X) p3: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p4: plus#(N,|0|()) -> isNat#(N) p5: isNat#(n__plus(V1,V2)) -> activate#(V1) p6: activate#(n__plus(X1,X2)) -> activate#(X1) p7: isNat#(n__plus(V1,V2)) -> activate#(V2) p8: isNat#(n__s(V1)) -> activate#(V1) p9: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p10: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p11: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p12: plus#(N,s(M)) -> isNat#(M) p13: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isNat#_A(x1) = ((1,0),(1,0)) x1 + (10,35) n__plus_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (8,18) and#_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,0)) x2 + (1,1) isNat_A(x1) = ((1,0),(0,0)) x1 + (8,21) activate_A(x1) = x1 + (0,19) n__isNat_A(x1) = ((1,0),(0,0)) x1 + (8,2) tt_A() = (14,18) activate#_A(x1) = ((1,0),(1,0)) x1 + (6,32) plus#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (11,39) |0|_A() = (15,20) n__s_A(x1) = ((1,0),(0,0)) x1 + (7,33) s_A(x1) = ((1,0),(0,0)) x1 + (7,34) U21#_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (17,33) and_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (0,20) U11_A(x1,x2) = ((1,0),(0,0)) x2 + (1,21) U21_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (15,35) plus_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (8,36) n__0_A() = (15,19) precedence: isNat# > and# = activate# = plus# = U21# > isNat = activate = |0| = and = U11 = U21 = plus > n__plus = n__isNat = n__s = s > tt = n__0 partial status: pi(isNat#) = [] pi(n__plus) = [] pi(and#) = [] pi(isNat) = [] pi(activate) = [] pi(n__isNat) = [] pi(tt) = [] pi(activate#) = [] pi(plus#) = [] pi(|0|) = [] pi(n__s) = [] pi(s) = [] pi(U21#) = [] pi(and) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: and#(tt(),X) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> isNat#(N) p4: isNat#(n__plus(V1,V2)) -> activate#(V1) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: isNat#(n__s(V1)) -> activate#(V1) p8: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p9: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p10: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p11: plus#(N,s(M)) -> isNat#(M) p12: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: and#(tt(),X) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> activate#(X1) p3: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p4: plus#(N,s(M)) -> isNat#(M) p5: isNat#(n__s(V1)) -> activate#(V1) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p9: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p10: U21#(tt(),M,N) -> activate#(M) p11: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p12: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: and#_A(x1,x2) = ((1,0),(0,0)) x2 + (7,1) tt_A() = (1,8) activate#_A(x1) = ((1,0),(1,0)) x1 + (6,9) n__plus_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (6,0) plus#_A(x1,x2) = ((1,0),(1,0)) x1 + x2 + (5,4) activate_A(x1) = ((1,0),(1,1)) x1 + (0,3) s_A(x1) = ((1,0),(0,0)) x1 + (7,5) isNat#_A(x1) = ((1,0),(1,0)) x1 + (0,4) n__s_A(x1) = ((1,0),(0,0)) x1 + (7,4) isNat_A(x1) = x1 + (3,2) n__isNat_A(x1) = x1 + (3,0) U21#_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (8,8) and_A(x1,x2) = ((1,0),(1,1)) x2 + (5,5) |0|_A() = (0,9) U11_A(x1,x2) = ((1,0),(1,1)) x2 + (1,4) U21_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (13,6) plus_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (6,7) n__0_A() = (0,9) precedence: n__plus > activate = isNat = U11 > and > |0| = n__0 > s = n__s = U21 = plus > tt > and# = activate# = plus# = isNat# = n__isNat > U21# partial status: pi(and#) = [] pi(tt) = [] pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [1] pi(s) = [] pi(isNat#) = [] pi(n__s) = [] pi(isNat) = [] pi(n__isNat) = [] pi(U21#) = [] pi(and) = [2] pi(|0|) = [] pi(U11) = [2] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p10 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: and#(tt(),X) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> activate#(X1) p3: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p4: plus#(N,s(M)) -> isNat#(M) p5: isNat#(n__s(V1)) -> activate#(V1) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p9: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p10: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p11: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: and#(tt(),X) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> isNat#(N) p4: isNat#(n__plus(V1,V2)) -> activate#(V1) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: isNat#(n__s(V1)) -> activate#(V1) p8: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p9: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p10: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p11: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: and#_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (1,15) tt_A() = (0,3) activate#_A(x1) = x1 + (0,14) n__plus_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (11,0) plus#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + (10,13) activate_A(x1) = ((1,0),(1,1)) x1 + (0,2) |0|_A() = (3,15) isNat#_A(x1) = ((1,0),(0,0)) x1 + (2,15) n__s_A(x1) = x1 s_A(x1) = x1 U21#_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(0,0)) x3 + (10,13) and_A(x1,x2) = ((1,0),(1,0)) x2 + (1,3) isNat_A(x1) = ((1,0),(1,0)) x1 + (4,12) n__isNat_A(x1) = ((1,0),(1,0)) x1 + (4,7) U11_A(x1,x2) = ((1,0),(1,0)) x2 + (4,3) U21_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (11,8) plus_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (11,8) n__0_A() = (3,11) precedence: n__plus = plus# = activate = n__s = s = U21# = and = isNat = n__isNat = U11 = U21 = plus > and# > tt = |0| = n__0 > isNat# > activate# partial status: pi(and#) = [2] pi(tt) = [] pi(activate#) = [1] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [] pi(|0|) = [] pi(isNat#) = [] pi(n__s) = [] pi(s) = [] pi(U21#) = [] pi(and) = [] pi(isNat) = [] pi(n__isNat) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: plus#(N,|0|()) -> isNat#(N) p3: isNat#(n__plus(V1,V2)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> activate#(X1) p5: isNat#(n__plus(V1,V2)) -> activate#(V2) p6: isNat#(n__s(V1)) -> activate#(V1) p7: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p8: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p9: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p10: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: plus#(N,s(M)) -> isNat#(M) p3: isNat#(n__s(V1)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> activate#(X1) p5: isNat#(n__plus(V1,V2)) -> activate#(V2) p6: isNat#(n__plus(V1,V2)) -> activate#(V1) p7: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p8: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p9: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = ((0,0),(1,0)) x1 + (6,16) n__plus_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (7,15) plus#_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (6,15) activate_A(x1) = x1 + (0,6) s_A(x1) = ((1,0),(0,0)) x1 + (5,18) isNat#_A(x1) = ((0,0),(1,0)) x1 + (6,14) n__s_A(x1) = ((1,0),(0,0)) x1 + (5,17) U21#_A(x1,x2,x3) = ((0,0),(1,0)) x2 + ((0,0),(1,0)) x3 + (6,19) and_A(x1,x2) = x2 + (0,7) isNat_A(x1) = x1 + (13,6) n__isNat_A(x1) = x1 + (13,1) tt_A() = (1,1) |0|_A() = (0,3) U11_A(x1,x2) = x2 + (1,21) U21_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (12,19) plus_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (7,20) n__0_A() = (0,2) precedence: activate# = n__plus = plus# = activate = s = isNat# = and = isNat = tt = U11 = U21 = plus > n__s = |0| = n__0 > U21# > n__isNat partial status: pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [] pi(s) = [] pi(isNat#) = [] pi(n__s) = [] pi(U21#) = [] pi(and) = [] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(|0|) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: plus#(N,s(M)) -> isNat#(M) p3: isNat#(n__s(V1)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> activate#(X1) p5: isNat#(n__plus(V1,V2)) -> activate#(V2) p6: isNat#(n__plus(V1,V2)) -> activate#(V1) p7: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p8: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: plus#(N,|0|()) -> isNat#(N) p3: isNat#(n__plus(V1,V2)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> activate#(X1) p5: isNat#(n__plus(V1,V2)) -> activate#(V2) p6: isNat#(n__s(V1)) -> activate#(V1) p7: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = x1 + (1,14) n__plus_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (11,0) plus#_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,0)) x2 + (10,2) activate_A(x1) = x1 + (0,11) |0|_A() = (0,16) isNat#_A(x1) = x1 + (9,2) n__s_A(x1) = ((1,0),(0,0)) x1 + (8,13) s_A(x1) = ((1,0),(0,0)) x1 + (8,14) U11_A(x1,x2) = x2 + (1,12) tt_A() = (8,15) U21_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((1,0),(1,0)) x2 + ((1,0),(0,0)) x3 + (19,7) plus_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (11,10) and_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (1,1) isNat_A(x1) = ((1,0),(0,0)) x1 + (9,20) n__0_A() = (0,16) n__isNat_A(x1) = ((1,0),(0,0)) x1 + (9,10) precedence: activate = |0| = U11 = U21 = plus > tt = and = isNat > n__plus = n__s = s = n__isNat > isNat# > activate# > plus# = n__0 partial status: pi(activate#) = [1] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [] pi(|0|) = [] pi(isNat#) = [1] pi(n__s) = [] pi(s) = [] pi(U11) = [] pi(tt) = [] pi(U21) = [] pi(plus) = [] pi(and) = [] pi(isNat) = [] pi(n__0) = [] pi(n__isNat) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: plus#(N,|0|()) -> isNat#(N) p3: isNat#(n__plus(V1,V2)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> activate#(X1) p5: isNat#(n__plus(V1,V2)) -> activate#(V2) p6: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: plus#(N,s(M)) -> isNat#(M) p3: isNat#(n__plus(V1,V2)) -> activate#(V2) p4: activate#(n__plus(X1,X2)) -> activate#(X1) p5: isNat#(n__plus(V1,V2)) -> activate#(V1) p6: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = ((0,0),(1,0)) x1 + (0,11) n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (10,10) plus#_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (0,3) activate_A(x1) = ((1,0),(1,1)) x1 + (0,6) s_A(x1) = ((1,0),(0,0)) x1 + (5,10) isNat#_A(x1) = ((0,0),(1,0)) x1 + (0,2) |0|_A() = (0,1) U11_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (1,0) tt_A() = (1,0) U21_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(1,0)) x3 + (15,11) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (10,11) and_A(x1,x2) = ((1,0),(1,1)) x2 + (0,7) isNat_A(x1) = ((0,0),(1,0)) x1 + (2,0) n__0_A() = (0,0) n__isNat_A(x1) = ((0,0),(1,0)) x1 + (2,0) n__s_A(x1) = ((1,0),(0,0)) x1 + (5,0) precedence: s = tt = U21 = isNat = n__isNat > and > n__plus = activate = |0| = U11 = plus > plus# = isNat# = n__0 > activate# = n__s partial status: pi(activate#) = [] pi(n__plus) = [1] pi(plus#) = [] pi(activate) = [1] pi(s) = [] pi(isNat#) = [] pi(|0|) = [] pi(U11) = [2] pi(tt) = [] pi(U21) = [] pi(plus) = [1] pi(and) = [] pi(isNat) = [] pi(n__0) = [] pi(n__isNat) = [] pi(n__s) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: plus#(N,s(M)) -> isNat#(M) p3: activate#(n__plus(X1,X2)) -> activate#(X1) p4: isNat#(n__plus(V1,V2)) -> activate#(V1) p5: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: plus#(N,|0|()) -> isNat#(N) p3: isNat#(n__plus(V1,V2)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> activate#(X1) p5: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = x1 + (0,5) n__plus_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (12,6) plus#_A(x1,x2) = x1 + ((1,0),(1,0)) x2 + (2,1) activate_A(x1) = ((1,0),(1,1)) x1 |0|_A() = (2,3) isNat#_A(x1) = ((1,0),(0,0)) x1 + (3,4) s_A(x1) = ((1,0),(0,0)) x1 + (4,3) U11_A(x1,x2) = ((1,0),(0,0)) x2 + (3,4) tt_A() = (0,1) U21_A(x1,x2,x3) = ((1,0),(0,0)) x2 + x3 + (16,4) plus_A(x1,x2) = x1 + ((1,0),(1,0)) x2 + (12,7) and_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,1)) x2 + (1,0) isNat_A(x1) = ((1,0),(0,0)) x1 + (5,7) n__0_A() = (2,2) n__isNat_A(x1) = ((1,0),(0,0)) x1 + (5,2) n__s_A(x1) = ((1,0),(0,0)) x1 + (4,0) precedence: n__plus = activate = tt = and = isNat > U11 > U21 = plus > plus# = isNat# > activate# > |0| = s = n__s > n__0 = n__isNat partial status: pi(activate#) = [1] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [] pi(|0|) = [] pi(isNat#) = [] pi(s) = [] pi(U11) = [] pi(tt) = [] pi(U21) = [] pi(plus) = [] pi(and) = [] pi(isNat) = [] pi(n__0) = [] pi(n__isNat) = [] pi(n__s) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: isNat#(n__plus(V1,V2)) -> activate#(V1) p3: activate#(n__plus(X1,X2)) -> activate#(X1) p4: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: plus#(N,s(M)) -> isNat#(M) p3: isNat#(n__plus(V1,V2)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> activate#(X1) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = x1 + (1,5) n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (9,1) plus#_A(x1,x2) = ((1,0),(0,0)) x2 + (1,2) activate_A(x1) = ((1,0),(1,1)) x1 + (0,7) s_A(x1) = ((1,0),(0,0)) x1 + (8,12) isNat#_A(x1) = x1 + (1,3) U11_A(x1,x2) = ((1,0),(1,1)) x2 + (7,8) tt_A() = (12,10) U21_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (17,1) plus_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (9,2) and_A(x1,x2) = ((0,0),(1,0)) x1 + x2 + (3,1) isNat_A(x1) = ((1,0),(0,0)) x1 + (7,11) n__0_A() = (6,1) n__isNat_A(x1) = ((1,0),(0,0)) x1 + (7,2) n__s_A(x1) = ((1,0),(0,0)) x1 + (8,1) |0|_A() = (6,12) precedence: activate = U21 = plus > plus# = isNat# = U11 > s = tt = and = isNat > activate# = n__plus = n__0 = n__isNat = n__s = |0| partial status: pi(activate#) = [1] pi(n__plus) = [1] pi(plus#) = [] pi(activate) = [1] pi(s) = [] pi(isNat#) = [] pi(U11) = [2] pi(tt) = [] pi(U21) = [] pi(plus) = [1, 2] pi(and) = [] pi(isNat) = [] pi(n__0) = [] pi(n__isNat) = [] pi(n__s) = [] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: plus#(N,s(M)) -> isNat#(M) p2: isNat#(n__plus(V1,V2)) -> activate#(V1) p3: activate#(n__plus(X1,X2)) -> activate#(X1) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> activate#(X1) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = ((1,0),(1,1)) x1 n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (1,1) precedence: activate# > n__plus partial status: pi(activate#) = [1] pi(n__plus) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.