YES We show the termination of the TRS R: U11(tt(),N) -> activate(N) U21(tt(),M,N) -> s(plus(activate(N),activate(M))) and(tt(),X) -> activate(X) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) isNat(n__s(V1)) -> isNat(activate(V1)) plus(N,|0|()) -> U11(isNat(N),N) plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) |0|() -> n__0() plus(X1,X2) -> n__plus(X1,X2) isNat(X) -> n__isNat(X) s(X) -> n__s(X) activate(n__0()) -> |0|() activate(n__plus(X1,X2)) -> plus(X1,X2) activate(n__isNat(X)) -> isNat(X) activate(n__s(X)) -> s(X) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: U21#(tt(),M,N) -> s#(plus(activate(N),activate(M))) p3: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p4: U21#(tt(),M,N) -> activate#(N) p5: U21#(tt(),M,N) -> activate#(M) p6: and#(tt(),X) -> activate#(X) p7: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__s(V1)) -> isNat#(activate(V1)) p12: isNat#(n__s(V1)) -> activate#(V1) p13: plus#(N,|0|()) -> U11#(isNat(N),N) p14: plus#(N,|0|()) -> isNat#(N) p15: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p16: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p17: plus#(N,s(M)) -> isNat#(M) p18: activate#(n__0()) -> |0|#() p19: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p20: activate#(n__isNat(X)) -> isNat#(X) p21: activate#(n__s(X)) -> s#(X) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p19, p20} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__isNat(X)) -> isNat#(X) p3: isNat#(n__s(V1)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p5: plus#(N,s(M)) -> isNat#(M) p6: isNat#(n__s(V1)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V2) p8: isNat#(n__plus(V1,V2)) -> activate#(V1) p9: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p10: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p11: and#(tt(),X) -> activate#(X) p12: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p13: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p14: U21#(tt(),M,N) -> activate#(M) p15: U21#(tt(),M,N) -> activate#(N) p16: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p17: plus#(N,|0|()) -> isNat#(N) p18: plus#(N,|0|()) -> U11#(isNat(N),N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: U11#_A(x1,x2) = ((0,0),(1,0)) x2 + (6,6) tt_A() = (1,4) activate#_A(x1) = ((0,0),(1,0)) x1 + (6,5) n__isNat_A(x1) = ((1,0),(0,0)) x1 + (3,5) isNat#_A(x1) = ((0,0),(1,0)) x1 + (6,1) n__s_A(x1) = ((1,0),(0,0)) x1 + (5,0) n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,0)) x2 + (7,8) plus#_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (6,7) s_A(x1) = ((1,0),(0,0)) x1 + (5,7) activate_A(x1) = ((1,0),(1,1)) x1 + (0,3) and#_A(x1,x2) = ((0,0),(1,0)) x2 + (6,5) isNat_A(x1) = ((1,0),(0,0)) x1 + (3,6) U21#_A(x1,x2,x3) = ((0,0),(1,0)) x2 + ((0,0),(1,0)) x3 + (6,8) and_A(x1,x2) = ((1,0),(0,0)) x2 + (1,4) |0|_A() = (0,7) U11_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (1,1) U21_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (12,8) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,0)) x2 + (7,9) n__0_A() = (0,6) precedence: U11# = activate# = isNat# = n__s = n__plus = plus# = s = activate = and# = isNat = U21# = |0| = U11 = U21 = plus > and > tt = n__isNat = n__0 partial status: pi(U11#) = [] pi(tt) = [] pi(activate#) = [] pi(n__isNat) = [] pi(isNat#) = [] pi(n__s) = [] pi(n__plus) = [] pi(plus#) = [] pi(s) = [] pi(activate) = [] pi(and#) = [] pi(isNat) = [] pi(U21#) = [] pi(and) = [] pi(|0|) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p14 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__isNat(X)) -> isNat#(X) p3: isNat#(n__s(V1)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p5: plus#(N,s(M)) -> isNat#(M) p6: isNat#(n__s(V1)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V2) p8: isNat#(n__plus(V1,V2)) -> activate#(V1) p9: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p10: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p11: and#(tt(),X) -> activate#(X) p12: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p13: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p14: U21#(tt(),M,N) -> activate#(N) p15: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p16: plus#(N,|0|()) -> isNat#(N) p17: plus#(N,|0|()) -> U11#(isNat(N),N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,|0|()) -> U11#(isNat(N),N) p4: plus#(N,|0|()) -> isNat#(N) p5: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p6: and#(tt(),X) -> activate#(X) p7: activate#(n__isNat(X)) -> isNat#(X) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__s(V1)) -> isNat#(activate(V1)) p12: isNat#(n__s(V1)) -> activate#(V1) p13: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p14: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p15: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p16: plus#(N,s(M)) -> isNat#(M) p17: U21#(tt(),M,N) -> activate#(N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: U11#_A(x1,x2) = ((1,0),(0,0)) x2 + (12,16) tt_A() = (10,33) activate#_A(x1) = ((1,0),(0,0)) x1 + (9,9) n__plus_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (0,20) plus#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,1)) x2 + (8,9) |0|_A() = (11,17) isNat_A(x1) = x1 + (6,18) isNat#_A(x1) = ((1,0),(0,0)) x1 + (13,9) and#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 activate_A(x1) = x1 + (0,11) n__isNat_A(x1) = x1 + (6,8) n__s_A(x1) = ((1,0),(0,0)) x1 + (11,10) s_A(x1) = ((1,0),(0,0)) x1 + (11,19) U21#_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(0,0)) x3 + (12,21) and_A(x1,x2) = x2 + (0,18) U11_A(x1,x2) = ((1,0),(0,0)) x2 + (1,18) U21_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (11,33) plus_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (0,21) n__0_A() = (11,16) precedence: activate# = plus# = isNat# = and# = U21# > U11# > n__s = s > n__plus = activate = U11 = U21 = plus > isNat = n__isNat = and > tt = |0| = n__0 partial status: pi(U11#) = [] pi(tt) = [] pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [] pi(|0|) = [] pi(isNat) = [1] pi(isNat#) = [] pi(and#) = [] pi(activate) = [] pi(n__isNat) = [1] pi(n__s) = [] pi(s) = [] pi(U21#) = [] pi(and) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: plus#(N,|0|()) -> U11#(isNat(N),N) p3: plus#(N,|0|()) -> isNat#(N) p4: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p5: and#(tt(),X) -> activate#(X) p6: activate#(n__isNat(X)) -> isNat#(X) p7: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p8: isNat#(n__plus(V1,V2)) -> activate#(V1) p9: isNat#(n__plus(V1,V2)) -> activate#(V2) p10: isNat#(n__s(V1)) -> isNat#(activate(V1)) p11: isNat#(n__s(V1)) -> activate#(V1) p12: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p13: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p14: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p15: plus#(N,s(M)) -> isNat#(M) p16: U21#(tt(),M,N) -> activate#(N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p12, p13} {p4, p5, p6, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p2: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: U21#_A(x1,x2,x3) = ((1,0),(0,0)) x2 + (5,0) tt_A() = (3,2) plus#_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (4,12) activate_A(x1) = x1 + (0,8) s_A(x1) = ((1,0),(0,0)) x1 + (9,10) and_A(x1,x2) = ((1,0),(0,0)) x2 + (6,13) isNat_A(x1) = ((1,0),(0,0)) x1 + (8,15) n__isNat_A(x1) = ((1,0),(0,0)) x1 + (8,11) U11_A(x1,x2) = ((1,0),(1,1)) x2 + (3,9) U21_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(1,0)) x3 + (16,11) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(0,0)) x2 + (7,14) |0|_A() = (2,2) n__0_A() = (2,1) n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(0,0)) x2 + (7,7) n__s_A(x1) = ((1,0),(0,0)) x1 + (9,9) precedence: U21# > activate = s = isNat = n__isNat > plus# = U11 > tt = U21 = plus > and = |0| = n__0 = n__plus = n__s partial status: pi(U21#) = [] pi(tt) = [] pi(plus#) = [] pi(activate) = [1] pi(s) = [] pi(and) = [] pi(isNat) = [] pi(n__isNat) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [1] pi(|0|) = [] pi(n__0) = [] pi(n__plus) = [] pi(n__s) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNat(X)) -> isNat#(X) p2: isNat#(n__s(V1)) -> activate#(V1) p3: isNat#(n__s(V1)) -> isNat#(activate(V1)) p4: isNat#(n__plus(V1,V2)) -> activate#(V2) p5: isNat#(n__plus(V1,V2)) -> activate#(V1) p6: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p8: and#(tt(),X) -> activate#(X) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = ((1,0),(1,0)) x1 + (17,9) n__isNat_A(x1) = ((1,0),(0,0)) x1 + (3,0) isNat#_A(x1) = ((1,0),(1,0)) x1 + (4,1) n__s_A(x1) = ((1,0),(0,0)) x1 + (18,19) activate_A(x1) = ((1,0),(1,1)) x1 + (0,20) n__plus_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (13,0) and#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + (6,10) isNat_A(x1) = ((1,0),(0,0)) x1 + (3,22) tt_A() = (12,21) U11_A(x1,x2) = ((1,0),(0,0)) x2 + (11,21) U21_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (31,24) s_A(x1) = ((1,0),(0,0)) x1 + (18,23) plus_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (13,25) and_A(x1,x2) = ((1,0),(0,0)) x2 + (9,21) |0|_A() = (10,1) n__0_A() = (10,0) precedence: n__s = activate = isNat = tt = U11 = U21 = s = plus = and > n__plus > activate# = n__isNat = isNat# = and# > |0| = n__0 partial status: pi(activate#) = [] pi(n__isNat) = [] pi(isNat#) = [] pi(n__s) = [] pi(activate) = [] pi(n__plus) = [] pi(and#) = [] pi(isNat) = [] pi(tt) = [] pi(U11) = [] pi(U21) = [] pi(s) = [] pi(plus) = [] pi(and) = [] pi(|0|) = [] pi(n__0) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNat(X)) -> isNat#(X) p2: isNat#(n__s(V1)) -> activate#(V1) p3: isNat#(n__plus(V1,V2)) -> activate#(V2) p4: isNat#(n__plus(V1,V2)) -> activate#(V1) p5: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p6: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p7: and#(tt(),X) -> activate#(X) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNat(X)) -> isNat#(X) p2: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p3: and#(tt(),X) -> activate#(X) p4: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> activate#(V1) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: isNat#(n__s(V1)) -> activate#(V1) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = ((0,0),(1,0)) x1 + (10,11) n__isNat_A(x1) = ((1,0),(0,0)) x1 + (1,6) isNat#_A(x1) = ((0,0),(1,0)) x1 + (10,12) n__plus_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (0,6) and#_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (10,5) isNat_A(x1) = ((1,0),(1,0)) x1 + (1,13) activate_A(x1) = ((1,0),(1,1)) x1 + (0,11) tt_A() = (8,1) n__s_A(x1) = ((1,0),(0,0)) x1 + (9,12) U11_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (1,2) U21_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (9,15) s_A(x1) = ((1,0),(0,0)) x1 + (9,14) plus_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (0,16) and_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (0,4) |0|_A() = (9,2) n__0_A() = (9,2) precedence: activate# = isNat# = and# = isNat = activate = tt = n__s = U21 = s = plus = and > n__plus = U11 > |0| = n__0 > n__isNat partial status: pi(activate#) = [] pi(n__isNat) = [] pi(isNat#) = [] pi(n__plus) = [] pi(and#) = [] pi(isNat) = [] pi(activate) = [] pi(tt) = [] pi(n__s) = [] pi(U11) = [] pi(U21) = [] pi(s) = [] pi(plus) = [] pi(and) = [] pi(|0|) = [] pi(n__0) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNat(X)) -> isNat#(X) p2: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p3: and#(tt(),X) -> activate#(X) p4: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> activate#(V2) p6: isNat#(n__s(V1)) -> activate#(V1) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNat(X)) -> isNat#(X) p2: isNat#(n__s(V1)) -> activate#(V1) p3: isNat#(n__plus(V1,V2)) -> activate#(V2) p4: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p6: and#(tt(),X) -> activate#(X) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = ((0,0),(1,0)) x1 + (10,7) n__isNat_A(x1) = x1 + (1,6) isNat#_A(x1) = ((0,0),(1,0)) x1 + (10,1) n__s_A(x1) = ((1,0),(0,0)) x1 + (6,6) n__plus_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (9,0) activate_A(x1) = ((1,0),(1,1)) x1 + (0,5) and#_A(x1,x2) = ((0,0),(1,0)) x2 + (10,8) isNat_A(x1) = x1 + (1,12) tt_A() = (0,0) U11_A(x1,x2) = ((1,0),(0,0)) x2 + (1,3) U21_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (15,14) s_A(x1) = ((1,0),(0,0)) x1 + (6,13) plus_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + (9,13) and_A(x1,x2) = ((1,0),(1,1)) x2 + (0,5) |0|_A() = (0,2) n__0_A() = (0,1) precedence: activate = U11 = U21 = plus = and > isNat = tt > activate# = isNat# = and# > n__plus = |0| > n__isNat > n__s = s = n__0 partial status: pi(activate#) = [] pi(n__isNat) = [] pi(isNat#) = [] pi(n__s) = [] pi(n__plus) = [] pi(activate) = [] pi(and#) = [] pi(isNat) = [1] pi(tt) = [] pi(U11) = [] pi(U21) = [] pi(s) = [] pi(plus) = [] pi(and) = [] pi(|0|) = [] pi(n__0) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNat(X)) -> isNat#(X) p2: isNat#(n__s(V1)) -> activate#(V1) p3: isNat#(n__plus(V1,V2)) -> activate#(V2) p4: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p5: and#(tt(),X) -> activate#(X) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNat(X)) -> isNat#(X) p2: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p3: isNat#(n__plus(V1,V2)) -> activate#(V2) p4: isNat#(n__s(V1)) -> activate#(V1) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = ((1,0),(0,0)) x1 + (8,0) n__isNat_A(x1) = x1 + (9,10) isNat#_A(x1) = x1 n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (20,0) activate_A(x1) = x1 + (0,3) n__s_A(x1) = x1 + (8,0) U11_A(x1,x2) = ((1,0),(1,1)) x2 + (1,14) tt_A() = (4,1) U21_A(x1,x2,x3) = ((1,0),(1,1)) x2 + ((1,0),(1,1)) x3 + (28,10) s_A(x1) = x1 + (8,1) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (20,2) and_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (1,0) isNat_A(x1) = x1 + (9,12) n__0_A() = (0,11) |0|_A() = (0,13) precedence: and > n__isNat = activate = U11 = tt = U21 = s = plus = isNat > n__s > activate# > isNat# = |0| > n__0 > n__plus partial status: pi(activate#) = [] pi(n__isNat) = [] pi(isNat#) = [1] pi(n__plus) = [] pi(activate) = [1] pi(n__s) = [1] pi(U11) = [2] pi(tt) = [] pi(U21) = [] pi(s) = [] pi(plus) = [1, 2] pi(and) = [] pi(isNat) = [1] pi(n__0) = [] pi(|0|) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNat(X)) -> isNat#(X) p2: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p3: isNat#(n__plus(V1,V2)) -> activate#(V2) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNat(X)) -> isNat#(X) p2: isNat#(n__plus(V1,V2)) -> activate#(V2) p3: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: activate#_A(x1) = ((1,0),(0,0)) x1 + (0,9) n__isNat_A(x1) = x1 + (3,6) isNat#_A(x1) = ((1,0),(0,0)) x1 + (2,9) n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (0,8) activate_A(x1) = x1 + (0,3) U11_A(x1,x2) = x2 + (0,4) tt_A() = (1,1) U21_A(x1,x2,x3) = ((1,0),(1,0)) x2 + x3 + (2,14) s_A(x1) = ((1,0),(0,0)) x1 + (2,13) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (0,9) and_A(x1,x2) = ((0,0),(1,0)) x1 + x2 + (0,3) isNat_A(x1) = x1 + (3,8) n__0_A() = (0,0) n__s_A(x1) = ((1,0),(0,0)) x1 + (2,12) |0|_A() = (0,0) precedence: n__isNat = activate = U11 = tt = U21 = plus = and = isNat > isNat# = s > activate# = |0| > n__0 > n__plus = n__s partial status: pi(activate#) = [] pi(n__isNat) = [] pi(isNat#) = [] pi(n__plus) = [] pi(activate) = [] pi(U11) = [] pi(tt) = [] pi(U21) = [] pi(s) = [] pi(plus) = [] pi(and) = [] pi(isNat) = [] pi(n__0) = [] pi(n__s) = [] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__plus(V1,V2)) -> activate#(V2) p2: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: isNat#_A(x1) = ((1,0),(1,1)) x1 + (1,0) n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (5,3) activate_A(x1) = ((1,0),(1,1)) x1 + (0,2) U11_A(x1,x2) = ((1,0),(1,1)) x2 + (1,3) tt_A() = (3,3) U21_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (5,14) s_A(x1) = ((1,0),(0,0)) x1 + (0,13) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (5,4) and_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(1,1)) x2 isNat_A(x1) = ((1,0),(0,0)) x1 + (4,10) n__0_A() = (0,10) n__isNat_A(x1) = ((1,0),(0,0)) x1 + (4,4) n__s_A(x1) = ((1,0),(0,0)) x1 + (0,12) |0|_A() = (0,11) precedence: s = n__s > U11 > n__plus = activate = U21 = plus > isNat > and > isNat# = tt = n__isNat > n__0 = |0| partial status: pi(isNat#) = [1] pi(n__plus) = [1, 2] pi(activate) = [1] pi(U11) = [2] pi(tt) = [] pi(U21) = [] pi(s) = [] pi(plus) = [1, 2] pi(and) = [2] pi(isNat) = [] pi(n__0) = [] pi(n__isNat) = [] pi(n__s) = [] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.