YES We show the termination of the TRS R: f(f(x)) -> f(g(f(x),x)) f(f(x)) -> f(h(f(x),f(x))) g(x,y) -> y h(x,x) -> g(x,|0|()) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(f(x)) -> f#(g(f(x),x)) p2: f#(f(x)) -> g#(f(x),x) p3: f#(f(x)) -> f#(h(f(x),f(x))) p4: f#(f(x)) -> h#(f(x),f(x)) p5: h#(x,x) -> g#(x,|0|()) and R consists of: r1: f(f(x)) -> f(g(f(x),x)) r2: f(f(x)) -> f(h(f(x),f(x))) r3: g(x,y) -> y r4: h(x,x) -> g(x,|0|()) The estimated dependency graph contains the following SCCs: {p1, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(f(x)) -> f#(g(f(x),x)) p2: f#(f(x)) -> f#(h(f(x),f(x))) and R consists of: r1: f(f(x)) -> f(g(f(x),x)) r2: f(f(x)) -> f(h(f(x),f(x))) r3: g(x,y) -> y r4: h(x,x) -> g(x,|0|()) The set of usable rules consists of r1, r2, r3, r4 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: f#_A(x1) = ((1,0),(0,0)) x1 + (1,2) f_A(x1) = x1 + (4,4) g_A(x1,x2) = x2 + (0,1) h_A(x1,x2) = (2,3) |0|_A() = (1,1) precedence: f = g > f# = h > |0| partial status: pi(f#) = [] pi(f) = [1] pi(g) = [] pi(h) = [] pi(|0|) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(f(x)) -> f#(g(f(x),x)) and R consists of: r1: f(f(x)) -> f(g(f(x),x)) r2: f(f(x)) -> f(h(f(x),f(x))) r3: g(x,y) -> y r4: h(x,x) -> g(x,|0|()) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(f(x)) -> f#(g(f(x),x)) and R consists of: r1: f(f(x)) -> f(g(f(x),x)) r2: f(f(x)) -> f(h(f(x),f(x))) r3: g(x,y) -> y r4: h(x,x) -> g(x,|0|()) The set of usable rules consists of r1, r2, r3, r4 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: f#_A(x1) = ((1,0),(0,0)) x1 + (4,9) f_A(x1) = ((1,0),(1,0)) x1 + (4,3) g_A(x1,x2) = ((1,0),(1,1)) x2 + (1,8) h_A(x1,x2) = (3,2) |0|_A() = (1,1) precedence: f# = f = g = h = |0| partial status: pi(f#) = [] pi(f) = [] pi(g) = [2] pi(h) = [] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.