YES We show the termination of the TRS R: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(b(),x)) -> f#(a(),f(a(),f(a(),x))) p2: f#(a(),f(b(),x)) -> f#(a(),f(a(),x)) p3: f#(a(),f(b(),x)) -> f#(a(),x) p4: f#(b(),f(a(),x)) -> f#(b(),f(b(),f(b(),x))) p5: f#(b(),f(a(),x)) -> f#(b(),f(b(),x)) p6: f#(b(),f(a(),x)) -> f#(b(),x) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The estimated dependency graph contains the following SCCs: {p1, p2, p3} {p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(b(),x)) -> f#(a(),f(a(),f(a(),x))) p2: f#(a(),f(b(),x)) -> f#(a(),x) p3: f#(a(),f(b(),x)) -> f#(a(),f(a(),x)) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The set of usable rules consists of r1 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: f#_A(x1,x2) = x2 a_A() = (1,8) f_A(x1,x2) = ((0,0),(1,0)) x1 + x2 + (0,2) b_A() = (8,7) precedence: f# = a = f = b partial status: pi(f#) = [2] pi(a) = [] pi(f) = [2] pi(b) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(b(),x)) -> f#(a(),f(a(),f(a(),x))) p2: f#(a(),f(b(),x)) -> f#(a(),f(a(),x)) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(b(),x)) -> f#(a(),f(a(),f(a(),x))) p2: f#(a(),f(b(),x)) -> f#(a(),f(a(),x)) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The set of usable rules consists of r1 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: f#_A(x1,x2) = x2 + (1,2) a_A() = (3,8) f_A(x1,x2) = ((0,0),(1,0)) x1 + (1,1) b_A() = (4,9) precedence: f# = a = f = b partial status: pi(f#) = [] pi(a) = [] pi(f) = [] pi(b) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(b(),x)) -> f#(a(),f(a(),x)) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(b(),x)) -> f#(a(),f(a(),x)) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The set of usable rules consists of r1 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: f#_A(x1,x2) = ((1,0),(0,0)) x2 + (2,4) a_A() = (2,3) f_A(x1,x2) = ((1,0),(0,0)) x1 + (2,1) b_A() = (5,2) precedence: a = f > f# = b partial status: pi(f#) = [] pi(a) = [] pi(f) = [] pi(b) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(b(),f(a(),x)) -> f#(b(),f(b(),f(b(),x))) p2: f#(b(),f(a(),x)) -> f#(b(),x) p3: f#(b(),f(a(),x)) -> f#(b(),f(b(),x)) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The set of usable rules consists of r2 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: f#_A(x1,x2) = ((1,0),(1,0)) x2 + (6,3) b_A() = (0,1) f_A(x1,x2) = x1 + ((1,0),(1,0)) x2 + (2,2) a_A() = (3,0) precedence: f# = b = f = a partial status: pi(f#) = [] pi(b) = [] pi(f) = [1] pi(a) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(b(),f(a(),x)) -> f#(b(),f(b(),f(b(),x))) p2: f#(b(),f(a(),x)) -> f#(b(),x) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(b(),f(a(),x)) -> f#(b(),f(b(),f(b(),x))) p2: f#(b(),f(a(),x)) -> f#(b(),x) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The set of usable rules consists of r2 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: f#_A(x1,x2) = ((1,0),(0,0)) x2 + (2,4) b_A() = (1,1) f_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (2,3) a_A() = (7,2) precedence: f# = b = f = a partial status: pi(f#) = [] pi(b) = [] pi(f) = [] pi(a) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(b(),f(a(),x)) -> f#(b(),x) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(b(),f(a(),x)) -> f#(b(),x) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: f#_A(x1,x2) = ((0,0),(1,0)) x2 + (2,4) b_A() = (1,2) f_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (1,2) a_A() = (3,1) precedence: f# = b = f = a partial status: pi(f#) = [] pi(b) = [] pi(f) = [1] pi(a) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.