YES We show the termination of the TRS R: f(|0|(),|1|(),x) -> f(s(x),x,x) f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) p2: f#(x,y,s(z)) -> f#(|0|(),|1|(),z) and R consists of: r1: f(|0|(),|1|(),x) -> f(s(x),x,x) r2: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) p2: f#(x,y,s(z)) -> f#(|0|(),|1|(),z) and R consists of: r1: f(|0|(),|1|(),x) -> f(s(x),x,x) r2: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1,x2,x3) = max{0, x1 - 4, x3 - 1} |0|_A = 5 |1|_A = 4 s_A(x1) = x1 + 3 precedence: f# = |0| = |1| = s partial status: pi(f#) = [] pi(|0|) = [] pi(|1|) = [] pi(s) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1,x2,x3) = 0 |0|_A = 2 |1|_A = 5 s_A(x1) = x1 + 6 precedence: s > |0| = |1| > f# partial status: pi(f#) = [] pi(|0|) = [] pi(|1|) = [] pi(s) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) and R consists of: r1: f(|0|(),|1|(),x) -> f(s(x),x,x) r2: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) The estimated dependency graph contains the following SCCs: (no SCCs)