YES We show the termination of the TRS R: minus(x,|0|()) -> x minus(s(x),s(y)) -> minus(x,y) quot(|0|(),s(y)) -> |0|() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) plus(|0|(),y) -> y plus(s(x),y) -> s(plus(x,y)) minus(minus(x,y),z) -> minus(x,plus(y,z)) app(nil(),k) -> k app(l,nil()) -> l app(cons(x,l),k) -> cons(x,app(l,k)) sum(cons(x,nil())) -> cons(x,nil()) sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) p2: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) p3: quot#(s(x),s(y)) -> minus#(x,y) p4: plus#(s(x),y) -> plus#(x,y) p5: minus#(minus(x,y),z) -> minus#(x,plus(y,z)) p6: minus#(minus(x,y),z) -> plus#(y,z) p7: app#(cons(x,l),k) -> app#(l,k) p8: sum#(cons(x,cons(y,l))) -> sum#(cons(plus(x,y),l)) p9: sum#(cons(x,cons(y,l))) -> plus#(x,y) p10: sum#(app(l,cons(x,cons(y,k)))) -> sum#(app(l,sum(cons(x,cons(y,k))))) p11: sum#(app(l,cons(x,cons(y,k)))) -> app#(l,sum(cons(x,cons(y,k)))) p12: sum#(app(l,cons(x,cons(y,k)))) -> sum#(cons(x,cons(y,k))) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: app(nil(),k) -> k r9: app(l,nil()) -> l r10: app(cons(x,l),k) -> cons(x,app(l,k)) r11: sum(cons(x,nil())) -> cons(x,nil()) r12: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r13: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) The estimated dependency graph contains the following SCCs: {p2} {p1, p5} {p10} {p8} {p4} {p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: app(nil(),k) -> k r9: app(l,nil()) -> l r10: app(cons(x,l),k) -> cons(x,app(l,k)) r11: sum(cons(x,nil())) -> cons(x,nil()) r12: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r13: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) The set of usable rules consists of r1, r2, r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: quot#_A(x1,x2) = ((0,0),(1,0)) x1 + (1,1) s_A(x1) = ((1,0),(0,0)) x1 + (3,2) minus_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,0),(1,0)) x2 + (2,5) plus_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (5,1) |0|_A() = (1,1) precedence: s = minus = plus = |0| > quot# partial status: pi(quot#) = [] pi(s) = [] pi(minus) = [1] pi(plus) = [1, 2] pi(|0|) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: quot#_A(x1,x2) = (0,0) s_A(x1) = (0,0) minus_A(x1,x2) = ((1,0),(1,1)) x1 + (1,1) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 |0|_A() = (0,0) precedence: minus > quot# = s = plus = |0| partial status: pi(quot#) = [] pi(s) = [] pi(minus) = [1] pi(plus) = [] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) p2: minus#(minus(x,y),z) -> minus#(x,plus(y,z)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: app(nil(),k) -> k r9: app(l,nil()) -> l r10: app(cons(x,l),k) -> cons(x,app(l,k)) r11: sum(cons(x,nil())) -> cons(x,nil()) r12: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r13: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) The set of usable rules consists of r5, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: minus#_A(x1,x2) = max{x1 + 6, x2 + 2} s_A(x1) = max{3, x1} minus_A(x1,x2) = max{x1, x2} plus_A(x1,x2) = max{x1 + 4, x2} |0|_A = 0 precedence: plus > s > minus > minus# = |0| partial status: pi(minus#) = [1, 2] pi(s) = [1] pi(minus) = [1, 2] pi(plus) = [1, 2] pi(|0|) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: minus#_A(x1,x2) = max{x1 + 5, x2 + 2} s_A(x1) = max{6, x1 + 3} minus_A(x1,x2) = max{x1 - 1, x2 + 1} plus_A(x1,x2) = max{x1 - 4, x2 + 3} |0|_A = 0 precedence: s > plus > minus# = minus = |0| partial status: pi(minus#) = [2] pi(s) = [] pi(minus) = [2] pi(plus) = [2] pi(|0|) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sum#(app(l,cons(x,cons(y,k)))) -> sum#(app(l,sum(cons(x,cons(y,k))))) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: app(nil(),k) -> k r9: app(l,nil()) -> l r10: app(cons(x,l),k) -> cons(x,app(l,k)) r11: sum(cons(x,nil())) -> cons(x,nil()) r12: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r13: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) The set of usable rules consists of r5, r6, r8, r9, r10, r11, r12 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: sum#_A(x1) = ((1,0),(1,1)) x1 + (1,1) app_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (4,6) cons_A(x1,x2) = ((0,0),(1,0)) x2 + (3,1) sum_A(x1) = (3,3) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (2,5) |0|_A() = (1,1) s_A(x1) = (1,1) nil_A() = (1,0) precedence: sum > cons > app = s > plus = nil > sum# = |0| partial status: pi(sum#) = [1] pi(app) = [2] pi(cons) = [] pi(sum) = [] pi(plus) = [1, 2] pi(|0|) = [] pi(s) = [] pi(nil) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: sum#_A(x1) = ((1,0),(1,0)) x1 + (1,1) app_A(x1,x2) = ((1,0),(1,0)) x2 + (0,4) cons_A(x1,x2) = (3,0) sum_A(x1) = (1,8) plus_A(x1,x2) = (4,9) |0|_A() = (0,0) s_A(x1) = (0,0) nil_A() = (2,9) precedence: cons > |0| > app > sum# = sum = plus = s = nil partial status: pi(sum#) = [] pi(app) = [] pi(cons) = [] pi(sum) = [] pi(plus) = [] pi(|0|) = [] pi(s) = [] pi(nil) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sum#(cons(x,cons(y,l))) -> sum#(cons(plus(x,y),l)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: app(nil(),k) -> k r9: app(l,nil()) -> l r10: app(cons(x,l),k) -> cons(x,app(l,k)) r11: sum(cons(x,nil())) -> cons(x,nil()) r12: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r13: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) The set of usable rules consists of r5, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: sum#_A(x1) = x1 + 9 cons_A(x1,x2) = x2 + 2 plus_A(x1,x2) = max{x1 + 8, x2 + 8} |0|_A = 0 s_A(x1) = max{7, x1} precedence: sum# = cons = plus > |0| = s partial status: pi(sum#) = [] pi(cons) = [2] pi(plus) = [1, 2] pi(|0|) = [] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: sum#_A(x1) = 19 cons_A(x1,x2) = max{11, x2 + 7} plus_A(x1,x2) = max{12, x1 - 2, x2 + 1} |0|_A = 0 s_A(x1) = max{13, x1 + 1} precedence: sum# = cons = plus = |0| = s partial status: pi(sum#) = [] pi(cons) = [2] pi(plus) = [] pi(|0|) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(s(x),y) -> plus#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: app(nil(),k) -> k r9: app(l,nil()) -> l r10: app(cons(x,l),k) -> cons(x,app(l,k)) r11: sum(cons(x,nil())) -> cons(x,nil()) r12: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r13: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: plus#_A(x1,x2) = max{2, x1 + 1, x2} s_A(x1) = max{1, x1} precedence: plus# = s partial status: pi(plus#) = [1, 2] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: plus#_A(x1,x2) = max{x1 - 1, x2 + 1} s_A(x1) = x1 precedence: plus# = s partial status: pi(plus#) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(cons(x,l),k) -> app#(l,k) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: app(nil(),k) -> k r9: app(l,nil()) -> l r10: app(cons(x,l),k) -> cons(x,app(l,k)) r11: sum(cons(x,nil())) -> cons(x,nil()) r12: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r13: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: app#_A(x1,x2) = x1 + 1 cons_A(x1,x2) = max{x1, x2 + 1} precedence: app# = cons partial status: pi(app#) = [1] pi(cons) = [1, 2] 2. weighted path order base order: max/plus interpretations on natural numbers: app#_A(x1,x2) = max{0, x1 - 1} cons_A(x1,x2) = max{x1, x2} precedence: app# = cons partial status: pi(app#) = [] pi(cons) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.