YES We show the termination of the TRS R: le(|0|(),y) -> true() le(s(x),|0|()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,|0|()) -> x minus(s(x),s(y)) -> minus(x,y) gcd(|0|(),y) -> y gcd(s(x),|0|()) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) p2: minus#(s(x),s(y)) -> minus#(x,y) p3: gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y)) p4: gcd#(s(x),s(y)) -> le#(y,x) p5: if_gcd#(true(),s(x),s(y)) -> gcd#(minus(x,y),s(y)) p6: if_gcd#(true(),s(x),s(y)) -> minus#(x,y) p7: if_gcd#(false(),s(x),s(y)) -> gcd#(minus(y,x),s(x)) p8: if_gcd#(false(),s(x),s(y)) -> minus#(y,x) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(x,|0|()) -> x r5: minus(s(x),s(y)) -> minus(x,y) r6: gcd(|0|(),y) -> y r7: gcd(s(x),|0|()) -> s(x) r8: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r9: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r10: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) The estimated dependency graph contains the following SCCs: {p3, p5, p7} {p1} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_gcd#(false(),s(x),s(y)) -> gcd#(minus(y,x),s(x)) p2: gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y)) p3: if_gcd#(true(),s(x),s(y)) -> gcd#(minus(x,y),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(x,|0|()) -> x r5: minus(s(x),s(y)) -> minus(x,y) r6: gcd(|0|(),y) -> y r7: gcd(s(x),|0|()) -> s(x) r8: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r9: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r10: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) The set of usable rules consists of r1, r2, r3, r4, r5 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: if_gcd#_A(x1,x2,x3) = max{5, x1 - 1, x2 + 3, x3 + 1} false_A = 9 s_A(x1) = x1 + 17 gcd#_A(x1,x2) = max{x1 + 3, x2 + 1} minus_A(x1,x2) = max{16, x1 + 14, x2 + 14} le_A(x1,x2) = max{21, x1 + 5, x2 + 5} true_A = 16 |0|_A = 10 precedence: true > if_gcd# = false = s = gcd# = minus = le = |0| partial status: pi(if_gcd#) = [3] pi(false) = [] pi(s) = [] pi(gcd#) = [2] pi(minus) = [1, 2] pi(le) = [1, 2] pi(true) = [] pi(|0|) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: if_gcd#_A(x1,x2,x3) = 7 false_A = 16 s_A(x1) = 7 gcd#_A(x1,x2) = 7 minus_A(x1,x2) = max{x1, x2 - 5} le_A(x1,x2) = 14 true_A = 16 |0|_A = 7 precedence: if_gcd# = false = gcd# = |0| > s = true > minus = le partial status: pi(if_gcd#) = [] pi(false) = [] pi(s) = [] pi(gcd#) = [] pi(minus) = [1] pi(le) = [] pi(true) = [] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y)) p2: if_gcd#(true(),s(x),s(y)) -> gcd#(minus(x,y),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(x,|0|()) -> x r5: minus(s(x),s(y)) -> minus(x,y) r6: gcd(|0|(),y) -> y r7: gcd(s(x),|0|()) -> s(x) r8: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r9: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r10: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y)) p2: if_gcd#(true(),s(x),s(y)) -> gcd#(minus(x,y),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(x,|0|()) -> x r5: minus(s(x),s(y)) -> minus(x,y) r6: gcd(|0|(),y) -> y r7: gcd(s(x),|0|()) -> s(x) r8: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r9: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r10: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) The set of usable rules consists of r1, r2, r3, r4, r5 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: gcd#_A(x1,x2) = x1 + 10 s_A(x1) = max{24, x1 + 14} if_gcd#_A(x1,x2,x3) = max{6, x2 + 2} le_A(x1,x2) = max{x1 - 2, x2 + 25} true_A = 0 minus_A(x1,x2) = max{16, x1 + 3} |0|_A = 14 false_A = 13 precedence: if_gcd# > gcd# > le = minus = |0| = false > true > s partial status: pi(gcd#) = [1] pi(s) = [] pi(if_gcd#) = [2] pi(le) = [2] pi(true) = [] pi(minus) = [1] pi(|0|) = [] pi(false) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: gcd#_A(x1,x2) = x1 + 8 s_A(x1) = 0 if_gcd#_A(x1,x2,x3) = 3 le_A(x1,x2) = 9 true_A = 10 minus_A(x1,x2) = x1 + 5 |0|_A = 0 false_A = 10 precedence: if_gcd# = false > gcd# = le = true = minus = |0| > s partial status: pi(gcd#) = [] pi(s) = [] pi(if_gcd#) = [] pi(le) = [] pi(true) = [] pi(minus) = [1] pi(|0|) = [] pi(false) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(x,|0|()) -> x r5: minus(s(x),s(y)) -> minus(x,y) r6: gcd(|0|(),y) -> y r7: gcd(s(x),|0|()) -> s(x) r8: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r9: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r10: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: le#_A(x1,x2) = max{2, x1 - 1, x2 + 1} s_A(x1) = max{1, x1} precedence: le# = s partial status: pi(le#) = [2] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: le#_A(x1,x2) = 0 s_A(x1) = max{2, x1} precedence: le# = s partial status: pi(le#) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(x,|0|()) -> x r5: minus(s(x),s(y)) -> minus(x,y) r6: gcd(|0|(),y) -> y r7: gcd(s(x),|0|()) -> s(x) r8: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r9: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r10: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: minus#_A(x1,x2) = max{2, x1 - 1, x2 + 1} s_A(x1) = max{1, x1} precedence: minus# = s partial status: pi(minus#) = [2] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: minus#_A(x1,x2) = 0 s_A(x1) = max{2, x1} precedence: minus# = s partial status: pi(minus#) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.