YES We show the termination of the TRS R: lt(|0|(),s(x)) -> true() lt(x,|0|()) -> false() lt(s(x),s(y)) -> lt(x,y) logarithm(x) -> ifa(lt(|0|(),x),x) ifa(true(),x) -> help(x,|1|()) ifa(false(),x) -> logZeroError() help(x,y) -> ifb(lt(y,x),x,y) ifb(true(),x,y) -> help(half(x),s(y)) ifb(false(),x,y) -> y half(|0|()) -> |0|() half(s(|0|())) -> |0|() half(s(s(x))) -> s(half(x)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: lt#(s(x),s(y)) -> lt#(x,y) p2: logarithm#(x) -> ifa#(lt(|0|(),x),x) p3: logarithm#(x) -> lt#(|0|(),x) p4: ifa#(true(),x) -> help#(x,|1|()) p5: help#(x,y) -> ifb#(lt(y,x),x,y) p6: help#(x,y) -> lt#(y,x) p7: ifb#(true(),x,y) -> help#(half(x),s(y)) p8: ifb#(true(),x,y) -> half#(x) p9: half#(s(s(x))) -> half#(x) and R consists of: r1: lt(|0|(),s(x)) -> true() r2: lt(x,|0|()) -> false() r3: lt(s(x),s(y)) -> lt(x,y) r4: logarithm(x) -> ifa(lt(|0|(),x),x) r5: ifa(true(),x) -> help(x,|1|()) r6: ifa(false(),x) -> logZeroError() r7: help(x,y) -> ifb(lt(y,x),x,y) r8: ifb(true(),x,y) -> help(half(x),s(y)) r9: ifb(false(),x,y) -> y r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(x))) -> s(half(x)) The estimated dependency graph contains the following SCCs: {p5, p7} {p1} {p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ifb#(true(),x,y) -> help#(half(x),s(y)) p2: help#(x,y) -> ifb#(lt(y,x),x,y) and R consists of: r1: lt(|0|(),s(x)) -> true() r2: lt(x,|0|()) -> false() r3: lt(s(x),s(y)) -> lt(x,y) r4: logarithm(x) -> ifa(lt(|0|(),x),x) r5: ifa(true(),x) -> help(x,|1|()) r6: ifa(false(),x) -> logZeroError() r7: help(x,y) -> ifb(lt(y,x),x,y) r8: ifb(true(),x,y) -> help(half(x),s(y)) r9: ifb(false(),x,y) -> y r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(x))) -> s(half(x)) The set of usable rules consists of r1, r2, r3, r10, r11, r12 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: ifb#_A(x1,x2,x3) = max{x1 + 5, x2 + 8} true_A = 7 help#_A(x1,x2) = x1 + 8 half_A(x1) = max{0, x1 - 8} s_A(x1) = x1 + 8 lt_A(x1,x2) = x2 + 2 |0|_A = 0 false_A = 0 precedence: half = |0| > help# > true = s = lt > ifb# = false partial status: pi(ifb#) = [] pi(true) = [] pi(help#) = [1] pi(half) = [] pi(s) = [] pi(lt) = [2] pi(|0|) = [] pi(false) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: ifb#_A(x1,x2,x3) = 1 true_A = 3 help#_A(x1,x2) = x1 + 1 half_A(x1) = 5 s_A(x1) = 2 lt_A(x1,x2) = 4 |0|_A = 0 false_A = 5 precedence: |0| = false > ifb# = true = help# > lt > half > s partial status: pi(ifb#) = [] pi(true) = [] pi(help#) = [] pi(half) = [] pi(s) = [] pi(lt) = [] pi(|0|) = [] pi(false) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: help#(x,y) -> ifb#(lt(y,x),x,y) and R consists of: r1: lt(|0|(),s(x)) -> true() r2: lt(x,|0|()) -> false() r3: lt(s(x),s(y)) -> lt(x,y) r4: logarithm(x) -> ifa(lt(|0|(),x),x) r5: ifa(true(),x) -> help(x,|1|()) r6: ifa(false(),x) -> logZeroError() r7: help(x,y) -> ifb(lt(y,x),x,y) r8: ifb(true(),x,y) -> help(half(x),s(y)) r9: ifb(false(),x,y) -> y r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(x))) -> s(half(x)) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: lt#(s(x),s(y)) -> lt#(x,y) and R consists of: r1: lt(|0|(),s(x)) -> true() r2: lt(x,|0|()) -> false() r3: lt(s(x),s(y)) -> lt(x,y) r4: logarithm(x) -> ifa(lt(|0|(),x),x) r5: ifa(true(),x) -> help(x,|1|()) r6: ifa(false(),x) -> logZeroError() r7: help(x,y) -> ifb(lt(y,x),x,y) r8: ifb(true(),x,y) -> help(half(x),s(y)) r9: ifb(false(),x,y) -> y r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(x))) -> s(half(x)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: lt#_A(x1,x2) = max{2, x1 - 1, x2 + 1} s_A(x1) = max{1, x1} precedence: lt# = s partial status: pi(lt#) = [2] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: lt#_A(x1,x2) = 0 s_A(x1) = max{2, x1} precedence: lt# = s partial status: pi(lt#) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: half#(s(s(x))) -> half#(x) and R consists of: r1: lt(|0|(),s(x)) -> true() r2: lt(x,|0|()) -> false() r3: lt(s(x),s(y)) -> lt(x,y) r4: logarithm(x) -> ifa(lt(|0|(),x),x) r5: ifa(true(),x) -> help(x,|1|()) r6: ifa(false(),x) -> logZeroError() r7: help(x,y) -> ifb(lt(y,x),x,y) r8: ifb(true(),x,y) -> help(half(x),s(y)) r9: ifb(false(),x,y) -> y r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(x))) -> s(half(x)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: half#_A(x1) = max{2, x1 + 1} s_A(x1) = max{1, x1} precedence: half# = s partial status: pi(half#) = [1] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: half#_A(x1) = x1 + 1 s_A(x1) = x1 precedence: half# = s partial status: pi(half#) = [1] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.