YES We show the termination of the TRS R: minus(x,|0|()) -> x minus(s(x),s(y)) -> minus(x,y) double(|0|()) -> |0|() double(s(x)) -> s(s(double(x))) plus(s(x),s(y)) -> s(s(plus(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))))) plus(s(x),x) -> plus(if(gt(x,x),id(x),id(x)),s(x)) plus(zero(),y) -> y plus(id(x),s(y)) -> s(plus(x,if(gt(s(y),y),y,s(y)))) id(x) -> x if(true(),x,y) -> x if(false(),x,y) -> y not(x) -> if(x,false(),true()) gt(s(x),zero()) -> true() gt(zero(),y) -> false() gt(s(x),s(y)) -> gt(x,y) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) p2: double#(s(x)) -> double#(x) p3: plus#(s(x),s(y)) -> plus#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))) p4: plus#(s(x),s(y)) -> if#(gt(x,y),x,y) p5: plus#(s(x),s(y)) -> gt#(x,y) p6: plus#(s(x),s(y)) -> if#(not(gt(x,y)),id(x),id(y)) p7: plus#(s(x),s(y)) -> not#(gt(x,y)) p8: plus#(s(x),s(y)) -> id#(x) p9: plus#(s(x),s(y)) -> id#(y) p10: plus#(s(x),x) -> plus#(if(gt(x,x),id(x),id(x)),s(x)) p11: plus#(s(x),x) -> if#(gt(x,x),id(x),id(x)) p12: plus#(s(x),x) -> gt#(x,x) p13: plus#(s(x),x) -> id#(x) p14: plus#(id(x),s(y)) -> plus#(x,if(gt(s(y),y),y,s(y))) p15: plus#(id(x),s(y)) -> if#(gt(s(y),y),y,s(y)) p16: plus#(id(x),s(y)) -> gt#(s(y),y) p17: not#(x) -> if#(x,false(),true()) p18: gt#(s(x),s(y)) -> gt#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: double(|0|()) -> |0|() r4: double(s(x)) -> s(s(double(x))) r5: plus(s(x),s(y)) -> s(s(plus(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))))) r6: plus(s(x),x) -> plus(if(gt(x,x),id(x),id(x)),s(x)) r7: plus(zero(),y) -> y r8: plus(id(x),s(y)) -> s(plus(x,if(gt(s(y),y),y,s(y)))) r9: id(x) -> x r10: if(true(),x,y) -> x r11: if(false(),x,y) -> y r12: not(x) -> if(x,false(),true()) r13: gt(s(x),zero()) -> true() r14: gt(zero(),y) -> false() r15: gt(s(x),s(y)) -> gt(x,y) The estimated dependency graph contains the following SCCs: {p1} {p2} {p3, p10, p14} {p18} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: double(|0|()) -> |0|() r4: double(s(x)) -> s(s(double(x))) r5: plus(s(x),s(y)) -> s(s(plus(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))))) r6: plus(s(x),x) -> plus(if(gt(x,x),id(x),id(x)),s(x)) r7: plus(zero(),y) -> y r8: plus(id(x),s(y)) -> s(plus(x,if(gt(s(y),y),y,s(y)))) r9: id(x) -> x r10: if(true(),x,y) -> x r11: if(false(),x,y) -> y r12: not(x) -> if(x,false(),true()) r13: gt(s(x),zero()) -> true() r14: gt(zero(),y) -> false() r15: gt(s(x),s(y)) -> gt(x,y) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: minus#_A(x1,x2) = max{2, x1 - 1, x2 + 1} s_A(x1) = max{1, x1} precedence: minus# = s partial status: pi(minus#) = [2] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: minus#_A(x1,x2) = 0 s_A(x1) = max{2, x1} precedence: minus# = s partial status: pi(minus#) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: double#(s(x)) -> double#(x) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: double(|0|()) -> |0|() r4: double(s(x)) -> s(s(double(x))) r5: plus(s(x),s(y)) -> s(s(plus(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))))) r6: plus(s(x),x) -> plus(if(gt(x,x),id(x),id(x)),s(x)) r7: plus(zero(),y) -> y r8: plus(id(x),s(y)) -> s(plus(x,if(gt(s(y),y),y,s(y)))) r9: id(x) -> x r10: if(true(),x,y) -> x r11: if(false(),x,y) -> y r12: not(x) -> if(x,false(),true()) r13: gt(s(x),zero()) -> true() r14: gt(zero(),y) -> false() r15: gt(s(x),s(y)) -> gt(x,y) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: double#_A(x1) = max{4, x1 + 3} s_A(x1) = max{3, x1 + 2} precedence: double# = s partial status: pi(double#) = [1] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: double#_A(x1) = max{1, x1 - 1} s_A(x1) = x1 precedence: double# = s partial status: pi(double#) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(s(x),s(y)) -> plus#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))) p2: plus#(id(x),s(y)) -> plus#(x,if(gt(s(y),y),y,s(y))) p3: plus#(s(x),x) -> plus#(if(gt(x,x),id(x),id(x)),s(x)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: double(|0|()) -> |0|() r4: double(s(x)) -> s(s(double(x))) r5: plus(s(x),s(y)) -> s(s(plus(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))))) r6: plus(s(x),x) -> plus(if(gt(x,x),id(x),id(x)),s(x)) r7: plus(zero(),y) -> y r8: plus(id(x),s(y)) -> s(plus(x,if(gt(s(y),y),y,s(y)))) r9: id(x) -> x r10: if(true(),x,y) -> x r11: if(false(),x,y) -> y r12: not(x) -> if(x,false(),true()) r13: gt(s(x),zero()) -> true() r14: gt(zero(),y) -> false() r15: gt(s(x),s(y)) -> gt(x,y) The set of usable rules consists of r9, r10, r11, r12, r13, r14, r15 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: plus#_A(x1,x2) = max{64, x1 + 41, x2 + 33} s_A(x1) = max{32, x1 + 21} if_A(x1,x2,x3) = max{x2 + 10, x3} gt_A(x1,x2) = max{40, x2 + 20} not_A(x1) = x1 + 27 id_A(x1) = max{22, x1} true_A = 8 false_A = 0 zero_A = 9 precedence: s = not > plus# = if = gt = id = true = false = zero partial status: pi(plus#) = [1, 2] pi(s) = [1] pi(if) = [2, 3] pi(gt) = [2] pi(not) = [1] pi(id) = [1] pi(true) = [] pi(false) = [] pi(zero) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: plus#_A(x1,x2) = max{139, x1 + 106, x2 + 75} s_A(x1) = x1 + 59 if_A(x1,x2,x3) = max{14, x2 + 2} gt_A(x1,x2) = x2 + 13 not_A(x1) = x1 + 13 id_A(x1) = x1 + 33 true_A = 12 false_A = 12 zero_A = 0 precedence: plus# = s = if = gt = not = id = true = false = zero partial status: pi(plus#) = [2] pi(s) = [1] pi(if) = [] pi(gt) = [2] pi(not) = [1] pi(id) = [] pi(true) = [] pi(false) = [] pi(zero) = [] The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: gt#(s(x),s(y)) -> gt#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: double(|0|()) -> |0|() r4: double(s(x)) -> s(s(double(x))) r5: plus(s(x),s(y)) -> s(s(plus(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))))) r6: plus(s(x),x) -> plus(if(gt(x,x),id(x),id(x)),s(x)) r7: plus(zero(),y) -> y r8: plus(id(x),s(y)) -> s(plus(x,if(gt(s(y),y),y,s(y)))) r9: id(x) -> x r10: if(true(),x,y) -> x r11: if(false(),x,y) -> y r12: not(x) -> if(x,false(),true()) r13: gt(s(x),zero()) -> true() r14: gt(zero(),y) -> false() r15: gt(s(x),s(y)) -> gt(x,y) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: gt#_A(x1,x2) = max{2, x1 - 1, x2 + 1} s_A(x1) = max{1, x1} precedence: gt# = s partial status: pi(gt#) = [2] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: gt#_A(x1,x2) = 0 s_A(x1) = max{2, x1} precedence: gt# = s partial status: pi(gt#) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.