YES We show the termination of the TRS R: ap(ap(ff(),x),x) -> ap(ap(x,ap(ff(),x)),ap(ap(cons(),x),nil())) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ap#(ap(ff(),x),x) -> ap#(ap(x,ap(ff(),x)),ap(ap(cons(),x),nil())) p2: ap#(ap(ff(),x),x) -> ap#(x,ap(ff(),x)) p3: ap#(ap(ff(),x),x) -> ap#(ap(cons(),x),nil()) p4: ap#(ap(ff(),x),x) -> ap#(cons(),x) and R consists of: r1: ap(ap(ff(),x),x) -> ap(ap(x,ap(ff(),x)),ap(ap(cons(),x),nil())) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ap#(ap(ff(),x),x) -> ap#(ap(x,ap(ff(),x)),ap(ap(cons(),x),nil())) p2: ap#(ap(ff(),x),x) -> ap#(x,ap(ff(),x)) and R consists of: r1: ap(ap(ff(),x),x) -> ap(ap(x,ap(ff(),x)),ap(ap(cons(),x),nil())) The set of usable rules consists of r1 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: ap#_A(x1,x2) = max{1, x1 - 1, x2 - 1} ap_A(x1,x2) = max{4, x1 - 5, x2 - 1} ff_A = 18 cons_A = 7 nil_A = 0 precedence: nil > ap# = ap = ff = cons partial status: pi(ap#) = [] pi(ap) = [] pi(ff) = [] pi(cons) = [] pi(nil) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: ap#_A(x1,x2) = 0 ap_A(x1,x2) = 14 ff_A = 26 cons_A = 38 nil_A = 35 precedence: cons = nil > ff > ap > ap# partial status: pi(ap#) = [] pi(ap) = [] pi(ff) = [] pi(cons) = [] pi(nil) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ap#(ap(ff(),x),x) -> ap#(x,ap(ff(),x)) and R consists of: r1: ap(ap(ff(),x),x) -> ap(ap(x,ap(ff(),x)),ap(ap(cons(),x),nil())) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ap#(ap(ff(),x),x) -> ap#(x,ap(ff(),x)) and R consists of: r1: ap(ap(ff(),x),x) -> ap(ap(x,ap(ff(),x)),ap(ap(cons(),x),nil())) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: ap#_A(x1,x2) = max{x1 + 8, x2 + 7} ap_A(x1,x2) = max{x1 + 3, x2 + 3} ff_A = 2 precedence: ap# = ap = ff partial status: pi(ap#) = [1, 2] pi(ap) = [1, 2] pi(ff) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: ap#_A(x1,x2) = max{x1 + 4, x2 + 7} ap_A(x1,x2) = max{x1 + 1, x2 + 3} ff_A = 2 precedence: ap# = ap = ff partial status: pi(ap#) = [] pi(ap) = [2] pi(ff) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.