YES We show the termination of the TRS R: cond(true(),x,y) -> cond(gr(x,y),p(x),s(y)) gr(|0|(),x) -> false() gr(s(x),|0|()) -> true() gr(s(x),s(y)) -> gr(x,y) p(|0|()) -> |0|() p(s(x)) -> x -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cond#(true(),x,y) -> cond#(gr(x,y),p(x),s(y)) p2: cond#(true(),x,y) -> gr#(x,y) p3: cond#(true(),x,y) -> p#(x) p4: gr#(s(x),s(y)) -> gr#(x,y) and R consists of: r1: cond(true(),x,y) -> cond(gr(x,y),p(x),s(y)) r2: gr(|0|(),x) -> false() r3: gr(s(x),|0|()) -> true() r4: gr(s(x),s(y)) -> gr(x,y) r5: p(|0|()) -> |0|() r6: p(s(x)) -> x The estimated dependency graph contains the following SCCs: {p1} {p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cond#(true(),x,y) -> cond#(gr(x,y),p(x),s(y)) and R consists of: r1: cond(true(),x,y) -> cond(gr(x,y),p(x),s(y)) r2: gr(|0|(),x) -> false() r3: gr(s(x),|0|()) -> true() r4: gr(s(x),s(y)) -> gr(x,y) r5: p(|0|()) -> |0|() r6: p(s(x)) -> x The set of usable rules consists of r2, r3, r4, r5, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: cond#_A(x1,x2,x3) = max{x1 - 6, x2 + 5} true_A = 13 gr_A(x1,x2) = x1 + 10 p_A(x1) = max{1, x1 - 1} s_A(x1) = x1 + 14 |0|_A = 0 false_A = 9 precedence: cond# = gr > true = s > p = |0| = false partial status: pi(cond#) = [2] pi(true) = [] pi(gr) = [] pi(p) = [] pi(s) = [1] pi(|0|) = [] pi(false) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: cond#_A(x1,x2,x3) = x2 + 2 true_A = 0 gr_A(x1,x2) = 3 p_A(x1) = 3 s_A(x1) = max{9, x1 + 1} |0|_A = 4 false_A = 5 precedence: cond# = gr = p = s = |0| = false > true partial status: pi(cond#) = [2] pi(true) = [] pi(gr) = [] pi(p) = [] pi(s) = [1] pi(|0|) = [] pi(false) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: gr#(s(x),s(y)) -> gr#(x,y) and R consists of: r1: cond(true(),x,y) -> cond(gr(x,y),p(x),s(y)) r2: gr(|0|(),x) -> false() r3: gr(s(x),|0|()) -> true() r4: gr(s(x),s(y)) -> gr(x,y) r5: p(|0|()) -> |0|() r6: p(s(x)) -> x The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: gr#_A(x1,x2) = max{2, x1 - 1, x2 + 1} s_A(x1) = max{1, x1} precedence: gr# = s partial status: pi(gr#) = [2] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: gr#_A(x1,x2) = 0 s_A(x1) = max{2, x1} precedence: gr# = s partial status: pi(gr#) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.