YES We show the termination of the TRS R: g(A()) -> A() g(B()) -> A() g(B()) -> B() g(C()) -> A() g(C()) -> B() g(C()) -> C() foldf(x,nil()) -> x foldf(x,cons(y,z)) -> f(foldf(x,z),y) f(t,x) -> |f'|(t,g(x)) |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: foldf#(x,cons(y,z)) -> f#(foldf(x,z),y) p2: foldf#(x,cons(y,z)) -> foldf#(x,z) p3: f#(t,x) -> |f'|#(t,g(x)) p4: f#(t,x) -> g#(x) p5: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) p6: |f'|#(triple(a,b,c),A()) -> |f''|#(foldf(triple(cons(A(),a),nil(),c),b)) p7: |f'|#(triple(a,b,c),A()) -> foldf#(triple(cons(A(),a),nil(),c),b) p8: |f''|#(triple(a,b,c)) -> foldf#(triple(a,b,nil()),c) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: foldf#(x,cons(y,z)) -> f#(foldf(x,z),y) p2: f#(t,x) -> |f'|#(t,g(x)) p3: |f'|#(triple(a,b,c),A()) -> foldf#(triple(cons(A(),a),nil(),c),b) p4: foldf#(x,cons(y,z)) -> foldf#(x,z) p5: |f'|#(triple(a,b,c),A()) -> |f''|#(foldf(triple(cons(A(),a),nil(),c),b)) p6: |f''|#(triple(a,b,c)) -> foldf#(triple(a,b,nil()),c) p7: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: foldf#_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (1,1) cons_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (26,1) f#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + (24,27) foldf_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (1,13) |f'|#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + (23,26) g_A(x1) = x1 + (0,1) triple_A(x1,x2,x3) = ((1,0),(0,0)) x2 + x3 + (4,9) A_A() = (1,15) nil_A() = (0,8) |f''|#_A(x1) = ((1,0),(1,0)) x1 + (2,23) B_A() = (3,18) |f''|_A(x1) = ((1,0),(0,0)) x1 + (2,16) |f'|_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (26,10) C_A() = (5,19) f_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (26,12) precedence: foldf# = f# > |f'|# > |f''|# > foldf > g > f > |f'| > triple = A = |f''| > B > nil > C > cons partial status: pi(foldf#) = [2] pi(cons) = [] pi(f#) = [] pi(foldf) = [] pi(|f'|#) = [] pi(g) = [1] pi(triple) = [] pi(A) = [] pi(nil) = [] pi(|f''|#) = [] pi(B) = [] pi(|f''|) = [] pi(|f'|) = [2] pi(C) = [] pi(f) = [2] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: foldf#_A(x1,x2) = (7,7) cons_A(x1,x2) = (8,9) f#_A(x1,x2) = (6,6) foldf_A(x1,x2) = (2,2) |f'|#_A(x1,x2) = (5,5) g_A(x1) = ((1,0),(0,0)) x1 + (7,8) triple_A(x1,x2,x3) = (9,8) A_A() = (4,4) nil_A() = (1,0) |f''|#_A(x1) = (3,3) B_A() = (7,7) |f''|_A(x1) = (3,3) |f'|_A(x1,x2) = (10,1) C_A() = (5,5) f_A(x1,x2) = (1,1) precedence: g > cons > foldf# > f# = |f'|# = triple = A > nil = |f''| = |f'| = C > foldf > |f''|# > B = f partial status: pi(foldf#) = [] pi(cons) = [] pi(f#) = [] pi(foldf) = [] pi(|f'|#) = [] pi(g) = [] pi(triple) = [] pi(A) = [] pi(nil) = [] pi(|f''|#) = [] pi(B) = [] pi(|f''|) = [] pi(|f'|) = [] pi(C) = [] pi(f) = [] The next rules are strictly ordered: p1, p3, p6, p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(t,x) -> |f'|#(t,g(x)) p2: foldf#(x,cons(y,z)) -> foldf#(x,z) p3: |f'|#(triple(a,b,c),A()) -> |f''|#(foldf(triple(cons(A(),a),nil(),c),b)) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The estimated dependency graph contains the following SCCs: {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: foldf#(x,cons(y,z)) -> foldf#(x,z) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: foldf#_A(x1,x2) = max{0, x2 - 2} cons_A(x1,x2) = max{3, x1, x2 + 1} precedence: foldf# = cons partial status: pi(foldf#) = [] pi(cons) = [1, 2] 2. weighted path order base order: max/plus interpretations on natural numbers: foldf#_A(x1,x2) = 0 cons_A(x1,x2) = x2 precedence: foldf# = cons partial status: pi(foldf#) = [] pi(cons) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.