YES We show the termination of the TRS R: |0|(|#|()) -> |#|() +(x,|#|()) -> x +(|#|(),x) -> x +(|0|(x),|0|(y)) -> |0|(+(x,y)) +(|0|(x),|1|(y)) -> |1|(+(x,y)) +(|1|(x),|0|(y)) -> |1|(+(x,y)) +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) +(+(x,y),z) -> +(x,+(y,z)) *(|#|(),x) -> |#|() *(|0|(x),y) -> |0|(*(x,y)) *(|1|(x),y) -> +(|0|(*(x,y)),y) *(*(x,y),z) -> *(x,*(y,z)) sum(nil()) -> |0|(|#|()) sum(cons(x,l)) -> +(x,sum(l)) prod(nil()) -> |1|(|#|()) prod(cons(x,l)) -> *(x,prod(l)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(|0|(x),|0|(y)) -> |0|#(+(x,y)) p2: +#(|0|(x),|0|(y)) -> +#(x,y) p3: +#(|0|(x),|1|(y)) -> +#(x,y) p4: +#(|1|(x),|0|(y)) -> +#(x,y) p5: +#(|1|(x),|1|(y)) -> |0|#(+(+(x,y),|1|(|#|()))) p6: +#(|1|(x),|1|(y)) -> +#(+(x,y),|1|(|#|())) p7: +#(|1|(x),|1|(y)) -> +#(x,y) p8: +#(+(x,y),z) -> +#(x,+(y,z)) p9: +#(+(x,y),z) -> +#(y,z) p10: *#(|0|(x),y) -> |0|#(*(x,y)) p11: *#(|0|(x),y) -> *#(x,y) p12: *#(|1|(x),y) -> +#(|0|(*(x,y)),y) p13: *#(|1|(x),y) -> |0|#(*(x,y)) p14: *#(|1|(x),y) -> *#(x,y) p15: *#(*(x,y),z) -> *#(x,*(y,z)) p16: *#(*(x,y),z) -> *#(y,z) p17: sum#(nil()) -> |0|#(|#|()) p18: sum#(cons(x,l)) -> +#(x,sum(l)) p19: sum#(cons(x,l)) -> sum#(l) p20: prod#(cons(x,l)) -> *#(x,prod(l)) p21: prod#(cons(x,l)) -> prod#(l) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(+(x,y),z) -> +(x,+(y,z)) r9: *(|#|(),x) -> |#|() r10: *(|0|(x),y) -> |0|(*(x,y)) r11: *(|1|(x),y) -> +(|0|(*(x,y)),y) r12: *(*(x,y),z) -> *(x,*(y,z)) r13: sum(nil()) -> |0|(|#|()) r14: sum(cons(x,l)) -> +(x,sum(l)) r15: prod(nil()) -> |1|(|#|()) r16: prod(cons(x,l)) -> *(x,prod(l)) The estimated dependency graph contains the following SCCs: {p19} {p21} {p11, p14, p15, p16} {p2, p3, p4, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sum#(cons(x,l)) -> sum#(l) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(+(x,y),z) -> +(x,+(y,z)) r9: *(|#|(),x) -> |#|() r10: *(|0|(x),y) -> |0|(*(x,y)) r11: *(|1|(x),y) -> +(|0|(*(x,y)),y) r12: *(*(x,y),z) -> *(x,*(y,z)) r13: sum(nil()) -> |0|(|#|()) r14: sum(cons(x,l)) -> +(x,sum(l)) r15: prod(nil()) -> |1|(|#|()) r16: prod(cons(x,l)) -> *(x,prod(l)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: sum#_A(x1) = x1 + 2 cons_A(x1,x2) = max{x1 + 2, x2 + 2} precedence: cons > sum# partial status: pi(sum#) = [1] pi(cons) = [1, 2] 2. weighted path order base order: max/plus interpretations on natural numbers: sum#_A(x1) = x1 + 3 cons_A(x1,x2) = max{x1 - 1, x2} precedence: sum# = cons partial status: pi(sum#) = [] pi(cons) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: prod#(cons(x,l)) -> prod#(l) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(+(x,y),z) -> +(x,+(y,z)) r9: *(|#|(),x) -> |#|() r10: *(|0|(x),y) -> |0|(*(x,y)) r11: *(|1|(x),y) -> +(|0|(*(x,y)),y) r12: *(*(x,y),z) -> *(x,*(y,z)) r13: sum(nil()) -> |0|(|#|()) r14: sum(cons(x,l)) -> +(x,sum(l)) r15: prod(nil()) -> |1|(|#|()) r16: prod(cons(x,l)) -> *(x,prod(l)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: prod#_A(x1) = x1 + 2 cons_A(x1,x2) = max{x1 + 2, x2 + 2} precedence: cons > prod# partial status: pi(prod#) = [1] pi(cons) = [1, 2] 2. weighted path order base order: max/plus interpretations on natural numbers: prod#_A(x1) = x1 + 3 cons_A(x1,x2) = max{x1 - 1, x2} precedence: prod# = cons partial status: pi(prod#) = [] pi(cons) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: *#(*(x,y),z) -> *#(y,z) p2: *#(*(x,y),z) -> *#(x,*(y,z)) p3: *#(|1|(x),y) -> *#(x,y) p4: *#(|0|(x),y) -> *#(x,y) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(+(x,y),z) -> +(x,+(y,z)) r9: *(|#|(),x) -> |#|() r10: *(|0|(x),y) -> |0|(*(x,y)) r11: *(|1|(x),y) -> +(|0|(*(x,y)),y) r12: *(*(x,y),z) -> *(x,*(y,z)) r13: sum(nil()) -> |0|(|#|()) r14: sum(cons(x,l)) -> +(x,sum(l)) r15: prod(nil()) -> |1|(|#|()) r16: prod(cons(x,l)) -> *(x,prod(l)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: *#_A(x1,x2) = x1 + 4 *_A(x1,x2) = max{x1 + 5, x2} |1|_A(x1) = max{3, x1} |0|_A(x1) = max{2, x1} |#|_A = 0 +_A(x1,x2) = max{1, x1, x2} precedence: *# > * = |#| > |0| = + > |1| partial status: pi(*#) = [] pi(*) = [1, 2] pi(|1|) = [] pi(|0|) = [] pi(|#|) = [] pi(+) = [1, 2] 2. weighted path order base order: max/plus interpretations on natural numbers: *#_A(x1,x2) = 0 *_A(x1,x2) = max{15, x1 + 11, x2} |1|_A(x1) = 16 |0|_A(x1) = 16 |#|_A = 0 +_A(x1,x2) = max{17, x1 + 9, x2} precedence: |1| > *# = * = |#| > + > |0| partial status: pi(*#) = [] pi(*) = [1, 2] pi(|1|) = [] pi(|0|) = [] pi(|#|) = [] pi(+) = [2] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: *#(*(x,y),z) -> *#(y,z) p2: *#(|1|(x),y) -> *#(x,y) p3: *#(|0|(x),y) -> *#(x,y) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(+(x,y),z) -> +(x,+(y,z)) r9: *(|#|(),x) -> |#|() r10: *(|0|(x),y) -> |0|(*(x,y)) r11: *(|1|(x),y) -> +(|0|(*(x,y)),y) r12: *(*(x,y),z) -> *(x,*(y,z)) r13: sum(nil()) -> |0|(|#|()) r14: sum(cons(x,l)) -> +(x,sum(l)) r15: prod(nil()) -> |1|(|#|()) r16: prod(cons(x,l)) -> *(x,prod(l)) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: *#(*(x,y),z) -> *#(y,z) p2: *#(|0|(x),y) -> *#(x,y) p3: *#(|1|(x),y) -> *#(x,y) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(+(x,y),z) -> +(x,+(y,z)) r9: *(|#|(),x) -> |#|() r10: *(|0|(x),y) -> |0|(*(x,y)) r11: *(|1|(x),y) -> +(|0|(*(x,y)),y) r12: *(*(x,y),z) -> *(x,*(y,z)) r13: sum(nil()) -> |0|(|#|()) r14: sum(cons(x,l)) -> +(x,sum(l)) r15: prod(nil()) -> |1|(|#|()) r16: prod(cons(x,l)) -> *(x,prod(l)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: *#_A(x1,x2) = max{2, x1 + 1, x2 + 1} *_A(x1,x2) = max{x1, x2} |0|_A(x1) = max{1, x1} |1|_A(x1) = max{1, x1} precedence: *# = * = |0| = |1| partial status: pi(*#) = [1] pi(*) = [1, 2] pi(|0|) = [1] pi(|1|) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: *#_A(x1,x2) = max{0, x1 - 2} *_A(x1,x2) = max{x1 + 3, x2 + 1} |0|_A(x1) = max{3, x1 + 1} |1|_A(x1) = max{3, x1 + 1} precedence: *# = * = |0| = |1| partial status: pi(*#) = [] pi(*) = [2] pi(|0|) = [1] pi(|1|) = [1] The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(|0|(x),|0|(y)) -> +#(x,y) p2: +#(+(x,y),z) -> +#(y,z) p3: +#(+(x,y),z) -> +#(x,+(y,z)) p4: +#(|1|(x),|1|(y)) -> +#(x,y) p5: +#(|1|(x),|1|(y)) -> +#(+(x,y),|1|(|#|())) p6: +#(|0|(x),|1|(y)) -> +#(x,y) p7: +#(|1|(x),|0|(y)) -> +#(x,y) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(+(x,y),z) -> +(x,+(y,z)) r9: *(|#|(),x) -> |#|() r10: *(|0|(x),y) -> |0|(*(x,y)) r11: *(|1|(x),y) -> +(|0|(*(x,y)),y) r12: *(*(x,y),z) -> *(x,*(y,z)) r13: sum(nil()) -> |0|(|#|()) r14: sum(cons(x,l)) -> +(x,sum(l)) r15: prod(nil()) -> |1|(|#|()) r16: prod(cons(x,l)) -> *(x,prod(l)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: +#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (6,4) |0|_A(x1) = ((1,0),(1,1)) x1 + (1,3) +_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (2,10) |1|_A(x1) = ((1,0),(0,0)) x1 + (5,2) |#|_A() = (1,1) precedence: +# = |0| = + = |1| = |#| partial status: pi(+#) = [] pi(|0|) = [] pi(+) = [] pi(|1|) = [] pi(|#|) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: +#_A(x1,x2) = (2,5) |0|_A(x1) = ((1,0),(1,0)) x1 + (0,4) +_A(x1,x2) = ((1,0),(1,1)) x1 |1|_A(x1) = (1,2) |#|_A() = (0,1) precedence: +# > |1| = |#| > |0| = + partial status: pi(+#) = [] pi(|0|) = [] pi(+) = [1] pi(|1|) = [] pi(|#|) = [] The next rules are strictly ordered: p2, p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(|0|(x),|0|(y)) -> +#(x,y) p2: +#(+(x,y),z) -> +#(x,+(y,z)) p3: +#(|1|(x),|1|(y)) -> +#(x,y) p4: +#(|1|(x),|1|(y)) -> +#(+(x,y),|1|(|#|())) p5: +#(|1|(x),|0|(y)) -> +#(x,y) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(+(x,y),z) -> +(x,+(y,z)) r9: *(|#|(),x) -> |#|() r10: *(|0|(x),y) -> |0|(*(x,y)) r11: *(|1|(x),y) -> +(|0|(*(x,y)),y) r12: *(*(x,y),z) -> *(x,*(y,z)) r13: sum(nil()) -> |0|(|#|()) r14: sum(cons(x,l)) -> +(x,sum(l)) r15: prod(nil()) -> |1|(|#|()) r16: prod(cons(x,l)) -> *(x,prod(l)) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(|0|(x),|0|(y)) -> +#(x,y) p2: +#(|1|(x),|0|(y)) -> +#(x,y) p3: +#(|1|(x),|1|(y)) -> +#(+(x,y),|1|(|#|())) p4: +#(|1|(x),|1|(y)) -> +#(x,y) p5: +#(+(x,y),z) -> +#(x,+(y,z)) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(+(x,y),z) -> +(x,+(y,z)) r9: *(|#|(),x) -> |#|() r10: *(|0|(x),y) -> |0|(*(x,y)) r11: *(|1|(x),y) -> +(|0|(*(x,y)),y) r12: *(*(x,y),z) -> *(x,*(y,z)) r13: sum(nil()) -> |0|(|#|()) r14: sum(cons(x,l)) -> +(x,sum(l)) r15: prod(nil()) -> |1|(|#|()) r16: prod(cons(x,l)) -> *(x,prod(l)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: +#_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (6,12) |0|_A(x1) = ((1,0),(1,1)) x1 + (1,2) |1|_A(x1) = x1 + (5,11) +_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (2,1) |#|_A() = (1,0) precedence: +# = |0| = |1| = + = |#| partial status: pi(+#) = [] pi(|0|) = [] pi(|1|) = [] pi(+) = [] pi(|#|) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: +#_A(x1,x2) = x1 + (2,2) |0|_A(x1) = ((1,0),(0,0)) x1 + (12,6) |1|_A(x1) = x1 + (7,4) +_A(x1,x2) = ((1,0),(0,0)) x1 + (4,1) |#|_A() = (1,0) precedence: |0| = + > |1| = |#| > +# partial status: pi(+#) = [1] pi(|0|) = [] pi(|1|) = [] pi(+) = [] pi(|#|) = [] The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(+(x,y),z) -> +#(x,+(y,z)) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(+(x,y),z) -> +(x,+(y,z)) r9: *(|#|(),x) -> |#|() r10: *(|0|(x),y) -> |0|(*(x,y)) r11: *(|1|(x),y) -> +(|0|(*(x,y)),y) r12: *(*(x,y),z) -> *(x,*(y,z)) r13: sum(nil()) -> |0|(|#|()) r14: sum(cons(x,l)) -> +(x,sum(l)) r15: prod(nil()) -> |1|(|#|()) r16: prod(cons(x,l)) -> *(x,prod(l)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(+(x,y),z) -> +#(x,+(y,z)) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(+(x,y),z) -> +(x,+(y,z)) r9: *(|#|(),x) -> |#|() r10: *(|0|(x),y) -> |0|(*(x,y)) r11: *(|1|(x),y) -> +(|0|(*(x,y)),y) r12: *(*(x,y),z) -> *(x,*(y,z)) r13: sum(nil()) -> |0|(|#|()) r14: sum(cons(x,l)) -> +(x,sum(l)) r15: prod(nil()) -> |1|(|#|()) r16: prod(cons(x,l)) -> *(x,prod(l)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: +#_A(x1,x2) = max{x1 + 24, x2 + 12} +_A(x1,x2) = max{11, x1 + 6, x2} |0|_A(x1) = 5 |#|_A = 0 |1|_A(x1) = 2 precedence: +# = + > |0| = |#| = |1| partial status: pi(+#) = [1, 2] pi(+) = [1, 2] pi(|0|) = [] pi(|#|) = [] pi(|1|) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: +#_A(x1,x2) = max{x1 + 10, x2 + 14} +_A(x1,x2) = max{13, x1 + 4, x2 + 5} |0|_A(x1) = 21 |#|_A = 14 |1|_A(x1) = 11 precedence: +# = + = |0| = |#| = |1| partial status: pi(+#) = [1] pi(+) = [1, 2] pi(|0|) = [] pi(|#|) = [] pi(|1|) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.