YES We show the termination of the TRS R: eq(|0|(),|0|()) -> true() eq(|0|(),s(Y)) -> false() eq(s(X),|0|()) -> false() eq(s(X),s(Y)) -> eq(X,Y) le(|0|(),Y) -> true() le(s(X),|0|()) -> false() le(s(X),s(Y)) -> le(X,Y) min(cons(|0|(),nil())) -> |0|() min(cons(s(N),nil())) -> s(N) min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L))) ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L)) ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L)) replace(N,M,nil()) -> nil() replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L)) ifrepl(true(),N,M,cons(K,L)) -> cons(M,L) ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L)) selsort(nil()) -> nil() selsort(cons(N,L)) -> ifselsort(eq(N,min(cons(N,L))),cons(N,L)) ifselsort(true(),cons(N,L)) -> cons(N,selsort(L)) ifselsort(false(),cons(N,L)) -> cons(min(cons(N,L)),selsort(replace(min(cons(N,L)),N,L))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(s(X),s(Y)) -> eq#(X,Y) p2: le#(s(X),s(Y)) -> le#(X,Y) p3: min#(cons(N,cons(M,L))) -> ifmin#(le(N,M),cons(N,cons(M,L))) p4: min#(cons(N,cons(M,L))) -> le#(N,M) p5: ifmin#(true(),cons(N,cons(M,L))) -> min#(cons(N,L)) p6: ifmin#(false(),cons(N,cons(M,L))) -> min#(cons(M,L)) p7: replace#(N,M,cons(K,L)) -> ifrepl#(eq(N,K),N,M,cons(K,L)) p8: replace#(N,M,cons(K,L)) -> eq#(N,K) p9: ifrepl#(false(),N,M,cons(K,L)) -> replace#(N,M,L) p10: selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L)) p11: selsort#(cons(N,L)) -> eq#(N,min(cons(N,L))) p12: selsort#(cons(N,L)) -> min#(cons(N,L)) p13: ifselsort#(true(),cons(N,L)) -> selsort#(L) p14: ifselsort#(false(),cons(N,L)) -> min#(cons(N,L)) p15: ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L)) p16: ifselsort#(false(),cons(N,L)) -> replace#(min(cons(N,L)),N,L) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(Y)) -> false() r3: eq(s(X),|0|()) -> false() r4: eq(s(X),s(Y)) -> eq(X,Y) r5: le(|0|(),Y) -> true() r6: le(s(X),|0|()) -> false() r7: le(s(X),s(Y)) -> le(X,Y) r8: min(cons(|0|(),nil())) -> |0|() r9: min(cons(s(N),nil())) -> s(N) r10: min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L))) r11: ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L)) r12: ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L)) r13: replace(N,M,nil()) -> nil() r14: replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L)) r15: ifrepl(true(),N,M,cons(K,L)) -> cons(M,L) r16: ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L)) r17: selsort(nil()) -> nil() r18: selsort(cons(N,L)) -> ifselsort(eq(N,min(cons(N,L))),cons(N,L)) r19: ifselsort(true(),cons(N,L)) -> cons(N,selsort(L)) r20: ifselsort(false(),cons(N,L)) -> cons(min(cons(N,L)),selsort(replace(min(cons(N,L)),N,L))) The estimated dependency graph contains the following SCCs: {p10, p13, p15} {p7, p9} {p1} {p3, p5, p6} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L)) p2: selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L)) p3: ifselsort#(true(),cons(N,L)) -> selsort#(L) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(Y)) -> false() r3: eq(s(X),|0|()) -> false() r4: eq(s(X),s(Y)) -> eq(X,Y) r5: le(|0|(),Y) -> true() r6: le(s(X),|0|()) -> false() r7: le(s(X),s(Y)) -> le(X,Y) r8: min(cons(|0|(),nil())) -> |0|() r9: min(cons(s(N),nil())) -> s(N) r10: min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L))) r11: ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L)) r12: ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L)) r13: replace(N,M,nil()) -> nil() r14: replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L)) r15: ifrepl(true(),N,M,cons(K,L)) -> cons(M,L) r16: ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L)) r17: selsort(nil()) -> nil() r18: selsort(cons(N,L)) -> ifselsort(eq(N,min(cons(N,L))),cons(N,L)) r19: ifselsort(true(),cons(N,L)) -> cons(N,selsort(L)) r20: ifselsort(false(),cons(N,L)) -> cons(min(cons(N,L)),selsort(replace(min(cons(N,L)),N,L))) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: ifselsort#_A(x1,x2) = max{x1 + 12, x2 - 15} false_A = 18 cons_A(x1,x2) = max{32, x2 + 21} selsort#_A(x1) = max{7, x1 + 2} replace_A(x1,x2,x3) = max{13, x3 + 3} min_A(x1) = max{76, x1 + 22} eq_A(x1,x2) = 20 true_A = 0 le_A(x1,x2) = 93 |0|_A = 0 s_A(x1) = 33 ifmin_A(x1,x2) = max{76, x1 - 17, x2 + 22} ifrepl_A(x1,x2,x3,x4) = max{31, x1 + 15, x4 + 3} nil_A = 0 precedence: selsort# > ifselsort# = le > replace > ifrepl > eq > false = s > nil > cons = min = true = ifmin > |0| partial status: pi(ifselsort#) = [] pi(false) = [] pi(cons) = [] pi(selsort#) = [1] pi(replace) = [3] pi(min) = [] pi(eq) = [] pi(true) = [] pi(le) = [] pi(|0|) = [] pi(s) = [] pi(ifmin) = [] pi(ifrepl) = [4] pi(nil) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: ifselsort#_A(x1,x2) = 3 false_A = 47 cons_A(x1,x2) = 5 selsort#_A(x1) = 3 replace_A(x1,x2,x3) = x3 + 11 min_A(x1) = 22 eq_A(x1,x2) = 37 true_A = 47 le_A(x1,x2) = 67 |0|_A = 24 s_A(x1) = 4 ifmin_A(x1,x2) = 22 ifrepl_A(x1,x2,x3,x4) = x4 + 11 nil_A = 15 precedence: false = replace = true > min = le = ifmin > ifrepl > ifselsort# = cons = selsort# = eq = |0| = s = nil partial status: pi(ifselsort#) = [] pi(false) = [] pi(cons) = [] pi(selsort#) = [] pi(replace) = [3] pi(min) = [] pi(eq) = [] pi(true) = [] pi(le) = [] pi(|0|) = [] pi(s) = [] pi(ifmin) = [] pi(ifrepl) = [4] pi(nil) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L)) p2: selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L)) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(Y)) -> false() r3: eq(s(X),|0|()) -> false() r4: eq(s(X),s(Y)) -> eq(X,Y) r5: le(|0|(),Y) -> true() r6: le(s(X),|0|()) -> false() r7: le(s(X),s(Y)) -> le(X,Y) r8: min(cons(|0|(),nil())) -> |0|() r9: min(cons(s(N),nil())) -> s(N) r10: min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L))) r11: ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L)) r12: ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L)) r13: replace(N,M,nil()) -> nil() r14: replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L)) r15: ifrepl(true(),N,M,cons(K,L)) -> cons(M,L) r16: ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L)) r17: selsort(nil()) -> nil() r18: selsort(cons(N,L)) -> ifselsort(eq(N,min(cons(N,L))),cons(N,L)) r19: ifselsort(true(),cons(N,L)) -> cons(N,selsort(L)) r20: ifselsort(false(),cons(N,L)) -> cons(min(cons(N,L)),selsort(replace(min(cons(N,L)),N,L))) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L)) p2: selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L)) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(Y)) -> false() r3: eq(s(X),|0|()) -> false() r4: eq(s(X),s(Y)) -> eq(X,Y) r5: le(|0|(),Y) -> true() r6: le(s(X),|0|()) -> false() r7: le(s(X),s(Y)) -> le(X,Y) r8: min(cons(|0|(),nil())) -> |0|() r9: min(cons(s(N),nil())) -> s(N) r10: min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L))) r11: ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L)) r12: ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L)) r13: replace(N,M,nil()) -> nil() r14: replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L)) r15: ifrepl(true(),N,M,cons(K,L)) -> cons(M,L) r16: ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L)) r17: selsort(nil()) -> nil() r18: selsort(cons(N,L)) -> ifselsort(eq(N,min(cons(N,L))),cons(N,L)) r19: ifselsort(true(),cons(N,L)) -> cons(N,selsort(L)) r20: ifselsort(false(),cons(N,L)) -> cons(min(cons(N,L)),selsort(replace(min(cons(N,L)),N,L))) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: ifselsort#_A(x1,x2) = max{37, x1 + 17, x2 + 3} false_A = 7 cons_A(x1,x2) = x2 + 56 selsort#_A(x1) = max{19, x1 + 17} replace_A(x1,x2,x3) = x3 + 39 min_A(x1) = max{10, x1 + 6} eq_A(x1,x2) = 7 le_A(x1,x2) = 119 |0|_A = 9 true_A = 1 s_A(x1) = 111 ifmin_A(x1,x2) = max{69, x2 - 50} ifrepl_A(x1,x2,x3,x4) = max{46, x1 + 39, x4 + 39} nil_A = 49 precedence: replace = le > ifrepl > true = nil > cons = eq > ifselsort# = selsort# > ifmin > min = s > |0| > false partial status: pi(ifselsort#) = [2] pi(false) = [] pi(cons) = [2] pi(selsort#) = [1] pi(replace) = [3] pi(min) = [1] pi(eq) = [] pi(le) = [] pi(|0|) = [] pi(true) = [] pi(s) = [] pi(ifmin) = [] pi(ifrepl) = [1, 4] pi(nil) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: ifselsort#_A(x1,x2) = max{30, x2} false_A = 12 cons_A(x1,x2) = x2 + 53 selsort#_A(x1) = x1 + 25 replace_A(x1,x2,x3) = x3 + 6 min_A(x1) = 28 eq_A(x1,x2) = 37 le_A(x1,x2) = 80 |0|_A = 29 true_A = 81 s_A(x1) = 27 ifmin_A(x1,x2) = 28 ifrepl_A(x1,x2,x3,x4) = max{29, x1 + 22, x4 + 6} nil_A = 30 precedence: nil > s > ifselsort# = selsort# = replace = ifrepl > cons > min = eq = |0| = true = ifmin > false > le partial status: pi(ifselsort#) = [2] pi(false) = [] pi(cons) = [] pi(selsort#) = [1] pi(replace) = [3] pi(min) = [] pi(eq) = [] pi(le) = [] pi(|0|) = [] pi(true) = [] pi(s) = [] pi(ifmin) = [] pi(ifrepl) = [] pi(nil) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L)) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(Y)) -> false() r3: eq(s(X),|0|()) -> false() r4: eq(s(X),s(Y)) -> eq(X,Y) r5: le(|0|(),Y) -> true() r6: le(s(X),|0|()) -> false() r7: le(s(X),s(Y)) -> le(X,Y) r8: min(cons(|0|(),nil())) -> |0|() r9: min(cons(s(N),nil())) -> s(N) r10: min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L))) r11: ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L)) r12: ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L)) r13: replace(N,M,nil()) -> nil() r14: replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L)) r15: ifrepl(true(),N,M,cons(K,L)) -> cons(M,L) r16: ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L)) r17: selsort(nil()) -> nil() r18: selsort(cons(N,L)) -> ifselsort(eq(N,min(cons(N,L))),cons(N,L)) r19: ifselsort(true(),cons(N,L)) -> cons(N,selsort(L)) r20: ifselsort(false(),cons(N,L)) -> cons(min(cons(N,L)),selsort(replace(min(cons(N,L)),N,L))) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ifrepl#(false(),N,M,cons(K,L)) -> replace#(N,M,L) p2: replace#(N,M,cons(K,L)) -> ifrepl#(eq(N,K),N,M,cons(K,L)) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(Y)) -> false() r3: eq(s(X),|0|()) -> false() r4: eq(s(X),s(Y)) -> eq(X,Y) r5: le(|0|(),Y) -> true() r6: le(s(X),|0|()) -> false() r7: le(s(X),s(Y)) -> le(X,Y) r8: min(cons(|0|(),nil())) -> |0|() r9: min(cons(s(N),nil())) -> s(N) r10: min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L))) r11: ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L)) r12: ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L)) r13: replace(N,M,nil()) -> nil() r14: replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L)) r15: ifrepl(true(),N,M,cons(K,L)) -> cons(M,L) r16: ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L)) r17: selsort(nil()) -> nil() r18: selsort(cons(N,L)) -> ifselsort(eq(N,min(cons(N,L))),cons(N,L)) r19: ifselsort(true(),cons(N,L)) -> cons(N,selsort(L)) r20: ifselsort(false(),cons(N,L)) -> cons(min(cons(N,L)),selsort(replace(min(cons(N,L)),N,L))) The set of usable rules consists of r1, r2, r3, r4 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: ifrepl#_A(x1,x2,x3,x4) = max{5, x1 + 1, x4 - 13} false_A = 8 cons_A(x1,x2) = max{x1 + 14, x2 + 12} replace#_A(x1,x2,x3) = max{0, x3 - 2} eq_A(x1,x2) = x2 + 11 |0|_A = 7 true_A = 6 s_A(x1) = x1 + 9 precedence: replace# > ifrepl# > false = true > |0| > cons = s > eq partial status: pi(ifrepl#) = [1] pi(false) = [] pi(cons) = [1] pi(replace#) = [] pi(eq) = [] pi(|0|) = [] pi(true) = [] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: ifrepl#_A(x1,x2,x3,x4) = max{0, x1 - 2} false_A = 3 cons_A(x1,x2) = 3 replace#_A(x1,x2,x3) = 0 eq_A(x1,x2) = 1 |0|_A = 0 true_A = 2 s_A(x1) = x1 + 4 precedence: cons = true > false = replace# = eq = s > ifrepl# = |0| partial status: pi(ifrepl#) = [] pi(false) = [] pi(cons) = [] pi(replace#) = [] pi(eq) = [] pi(|0|) = [] pi(true) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: replace#(N,M,cons(K,L)) -> ifrepl#(eq(N,K),N,M,cons(K,L)) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(Y)) -> false() r3: eq(s(X),|0|()) -> false() r4: eq(s(X),s(Y)) -> eq(X,Y) r5: le(|0|(),Y) -> true() r6: le(s(X),|0|()) -> false() r7: le(s(X),s(Y)) -> le(X,Y) r8: min(cons(|0|(),nil())) -> |0|() r9: min(cons(s(N),nil())) -> s(N) r10: min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L))) r11: ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L)) r12: ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L)) r13: replace(N,M,nil()) -> nil() r14: replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L)) r15: ifrepl(true(),N,M,cons(K,L)) -> cons(M,L) r16: ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L)) r17: selsort(nil()) -> nil() r18: selsort(cons(N,L)) -> ifselsort(eq(N,min(cons(N,L))),cons(N,L)) r19: ifselsort(true(),cons(N,L)) -> cons(N,selsort(L)) r20: ifselsort(false(),cons(N,L)) -> cons(min(cons(N,L)),selsort(replace(min(cons(N,L)),N,L))) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(s(X),s(Y)) -> eq#(X,Y) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(Y)) -> false() r3: eq(s(X),|0|()) -> false() r4: eq(s(X),s(Y)) -> eq(X,Y) r5: le(|0|(),Y) -> true() r6: le(s(X),|0|()) -> false() r7: le(s(X),s(Y)) -> le(X,Y) r8: min(cons(|0|(),nil())) -> |0|() r9: min(cons(s(N),nil())) -> s(N) r10: min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L))) r11: ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L)) r12: ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L)) r13: replace(N,M,nil()) -> nil() r14: replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L)) r15: ifrepl(true(),N,M,cons(K,L)) -> cons(M,L) r16: ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L)) r17: selsort(nil()) -> nil() r18: selsort(cons(N,L)) -> ifselsort(eq(N,min(cons(N,L))),cons(N,L)) r19: ifselsort(true(),cons(N,L)) -> cons(N,selsort(L)) r20: ifselsort(false(),cons(N,L)) -> cons(min(cons(N,L)),selsort(replace(min(cons(N,L)),N,L))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: eq#_A(x1,x2) = max{2, x1 - 1, x2 + 1} s_A(x1) = max{1, x1} precedence: eq# = s partial status: pi(eq#) = [2] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: eq#_A(x1,x2) = 0 s_A(x1) = max{2, x1} precedence: eq# = s partial status: pi(eq#) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ifmin#(false(),cons(N,cons(M,L))) -> min#(cons(M,L)) p2: min#(cons(N,cons(M,L))) -> ifmin#(le(N,M),cons(N,cons(M,L))) p3: ifmin#(true(),cons(N,cons(M,L))) -> min#(cons(N,L)) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(Y)) -> false() r3: eq(s(X),|0|()) -> false() r4: eq(s(X),s(Y)) -> eq(X,Y) r5: le(|0|(),Y) -> true() r6: le(s(X),|0|()) -> false() r7: le(s(X),s(Y)) -> le(X,Y) r8: min(cons(|0|(),nil())) -> |0|() r9: min(cons(s(N),nil())) -> s(N) r10: min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L))) r11: ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L)) r12: ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L)) r13: replace(N,M,nil()) -> nil() r14: replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L)) r15: ifrepl(true(),N,M,cons(K,L)) -> cons(M,L) r16: ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L)) r17: selsort(nil()) -> nil() r18: selsort(cons(N,L)) -> ifselsort(eq(N,min(cons(N,L))),cons(N,L)) r19: ifselsort(true(),cons(N,L)) -> cons(N,selsort(L)) r20: ifselsort(false(),cons(N,L)) -> cons(min(cons(N,L)),selsort(replace(min(cons(N,L)),N,L))) The set of usable rules consists of r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: ifmin#_A(x1,x2) = max{23, x1 + 13, x2} false_A = 5 cons_A(x1,x2) = max{15, x1 + 14, x2 + 8} min#_A(x1) = max{17, x1} le_A(x1,x2) = max{8, x2 + 2} true_A = 1 |0|_A = 6 s_A(x1) = x1 + 6 precedence: cons > ifmin# = min# > le = true = |0| > false = s partial status: pi(ifmin#) = [1, 2] pi(false) = [] pi(cons) = [1, 2] pi(min#) = [1] pi(le) = [2] pi(true) = [] pi(|0|) = [] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: ifmin#_A(x1,x2) = x1 false_A = 9 cons_A(x1,x2) = max{23, x1 + 10, x2 + 3} min#_A(x1) = 9 le_A(x1,x2) = 8 true_A = 11 |0|_A = 10 s_A(x1) = x1 + 11 precedence: |0| > ifmin# = false = cons = min# = le = true = s partial status: pi(ifmin#) = [1] pi(false) = [] pi(cons) = [1, 2] pi(min#) = [] pi(le) = [] pi(true) = [] pi(|0|) = [] pi(s) = [1] The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: le#(s(X),s(Y)) -> le#(X,Y) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(Y)) -> false() r3: eq(s(X),|0|()) -> false() r4: eq(s(X),s(Y)) -> eq(X,Y) r5: le(|0|(),Y) -> true() r6: le(s(X),|0|()) -> false() r7: le(s(X),s(Y)) -> le(X,Y) r8: min(cons(|0|(),nil())) -> |0|() r9: min(cons(s(N),nil())) -> s(N) r10: min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L))) r11: ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L)) r12: ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L)) r13: replace(N,M,nil()) -> nil() r14: replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L)) r15: ifrepl(true(),N,M,cons(K,L)) -> cons(M,L) r16: ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L)) r17: selsort(nil()) -> nil() r18: selsort(cons(N,L)) -> ifselsort(eq(N,min(cons(N,L))),cons(N,L)) r19: ifselsort(true(),cons(N,L)) -> cons(N,selsort(L)) r20: ifselsort(false(),cons(N,L)) -> cons(min(cons(N,L)),selsort(replace(min(cons(N,L)),N,L))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: le#_A(x1,x2) = max{2, x1 - 1, x2 + 1} s_A(x1) = max{1, x1} precedence: le# = s partial status: pi(le#) = [2] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: le#_A(x1,x2) = 0 s_A(x1) = max{2, x1} precedence: le# = s partial status: pi(le#) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.