YES We show the termination of the TRS R: f(j(x,y),y) -> g(f(x,k(y))) f(x,h1(y,z)) -> h2(|0|(),x,h1(y,z)) g(h2(x,y,h1(z,u))) -> h2(s(x),y,h1(z,u)) h2(x,j(y,h1(z,u)),h1(z,u)) -> h2(s(x),y,h1(s(z),u)) i(f(x,h(y))) -> y i(h2(s(x),y,h1(x,z))) -> z k(h(x)) -> h1(|0|(),x) k(h1(x,y)) -> h1(s(x),y) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(j(x,y),y) -> g#(f(x,k(y))) p2: f#(j(x,y),y) -> f#(x,k(y)) p3: f#(j(x,y),y) -> k#(y) p4: f#(x,h1(y,z)) -> h2#(|0|(),x,h1(y,z)) p5: g#(h2(x,y,h1(z,u))) -> h2#(s(x),y,h1(z,u)) p6: h2#(x,j(y,h1(z,u)),h1(z,u)) -> h2#(s(x),y,h1(s(z),u)) and R consists of: r1: f(j(x,y),y) -> g(f(x,k(y))) r2: f(x,h1(y,z)) -> h2(|0|(),x,h1(y,z)) r3: g(h2(x,y,h1(z,u))) -> h2(s(x),y,h1(z,u)) r4: h2(x,j(y,h1(z,u)),h1(z,u)) -> h2(s(x),y,h1(s(z),u)) r5: i(f(x,h(y))) -> y r6: i(h2(s(x),y,h1(x,z))) -> z r7: k(h(x)) -> h1(|0|(),x) r8: k(h1(x,y)) -> h1(s(x),y) The estimated dependency graph contains the following SCCs: {p2} {p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(j(x,y),y) -> f#(x,k(y)) and R consists of: r1: f(j(x,y),y) -> g(f(x,k(y))) r2: f(x,h1(y,z)) -> h2(|0|(),x,h1(y,z)) r3: g(h2(x,y,h1(z,u))) -> h2(s(x),y,h1(z,u)) r4: h2(x,j(y,h1(z,u)),h1(z,u)) -> h2(s(x),y,h1(s(z),u)) r5: i(f(x,h(y))) -> y r6: i(h2(s(x),y,h1(x,z))) -> z r7: k(h(x)) -> h1(|0|(),x) r8: k(h1(x,y)) -> h1(s(x),y) The set of usable rules consists of r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1,x2) = max{x1 + 9, x2 + 7} j_A(x1,x2) = max{x1 + 5, x2 + 5} k_A(x1) = max{5, x1 + 4} h_A(x1) = x1 + 9 h1_A(x1,x2) = max{x1 + 2, x2 + 2} |0|_A = 6 s_A(x1) = max{2, x1 + 1} precedence: f# = j = h > h1 = |0| > k = s partial status: pi(f#) = [1, 2] pi(j) = [1, 2] pi(k) = [1] pi(h) = [1] pi(h1) = [1, 2] pi(|0|) = [] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1,x2) = max{x1 + 4, x2 + 3} j_A(x1,x2) = max{x1 - 1, x2} k_A(x1) = x1 + 5 h_A(x1) = x1 + 4 h1_A(x1,x2) = max{x1 + 11, x2 + 14} |0|_A = 3 s_A(x1) = max{3, x1} precedence: f# = j = k = h = h1 = |0| = s partial status: pi(f#) = [] pi(j) = [2] pi(k) = [1] pi(h) = [1] pi(h1) = [1, 2] pi(|0|) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: h2#(x,j(y,h1(z,u)),h1(z,u)) -> h2#(s(x),y,h1(s(z),u)) and R consists of: r1: f(j(x,y),y) -> g(f(x,k(y))) r2: f(x,h1(y,z)) -> h2(|0|(),x,h1(y,z)) r3: g(h2(x,y,h1(z,u))) -> h2(s(x),y,h1(z,u)) r4: h2(x,j(y,h1(z,u)),h1(z,u)) -> h2(s(x),y,h1(s(z),u)) r5: i(f(x,h(y))) -> y r6: i(h2(s(x),y,h1(x,z))) -> z r7: k(h(x)) -> h1(|0|(),x) r8: k(h1(x,y)) -> h1(s(x),y) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: h2#_A(x1,x2,x3) = max{x1 + 1, x2 + 13, x3 + 4} j_A(x1,x2) = max{x1 + 3, x2} h1_A(x1,x2) = max{x1 + 3, x2 + 3} s_A(x1) = 2 precedence: h2# = j = h1 = s partial status: pi(h2#) = [1] pi(j) = [2] pi(h1) = [1] pi(s) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: h2#_A(x1,x2,x3) = x1 + 4 j_A(x1,x2) = x2 + 7 h1_A(x1,x2) = max{12, x1 + 6} s_A(x1) = 5 precedence: h2# = j = h1 = s partial status: pi(h2#) = [] pi(j) = [2] pi(h1) = [1] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.