YES We show the termination of the TRS R: f(c(c(a(),y,a()),b(x,z),a())) -> b(y,f(c(f(a()),z,z))) f(b(b(x,f(y)),z)) -> c(z,x,f(b(b(f(a()),y),y))) c(b(a(),a()),b(y,z),x) -> b(a(),b(z,z)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(c(c(a(),y,a()),b(x,z),a())) -> f#(c(f(a()),z,z)) p2: f#(c(c(a(),y,a()),b(x,z),a())) -> c#(f(a()),z,z) p3: f#(c(c(a(),y,a()),b(x,z),a())) -> f#(a()) p4: f#(b(b(x,f(y)),z)) -> c#(z,x,f(b(b(f(a()),y),y))) p5: f#(b(b(x,f(y)),z)) -> f#(b(b(f(a()),y),y)) p6: f#(b(b(x,f(y)),z)) -> f#(a()) and R consists of: r1: f(c(c(a(),y,a()),b(x,z),a())) -> b(y,f(c(f(a()),z,z))) r2: f(b(b(x,f(y)),z)) -> c(z,x,f(b(b(f(a()),y),y))) r3: c(b(a(),a()),b(y,z),x) -> b(a(),b(z,z)) The estimated dependency graph contains the following SCCs: {p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(b(b(x,f(y)),z)) -> f#(b(b(f(a()),y),y)) and R consists of: r1: f(c(c(a(),y,a()),b(x,z),a())) -> b(y,f(c(f(a()),z,z))) r2: f(b(b(x,f(y)),z)) -> c(z,x,f(b(b(f(a()),y),y))) r3: c(b(a(),a()),b(y,z),x) -> b(a(),b(z,z)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1) = max{57, x1 + 12} b_A(x1,x2) = max{x1 + 3, x2 + 22} f_A(x1) = x1 + 25 a_A = 15 precedence: f# = b = f = a partial status: pi(f#) = [1] pi(b) = [1] pi(f) = [1] pi(a) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1) = max{22, x1 + 1} b_A(x1,x2) = max{12, x1 + 9} f_A(x1) = x1 + 11 a_A = 6 precedence: f# = b = f = a partial status: pi(f#) = [] pi(b) = [] pi(f) = [1] pi(a) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.