YES We show the termination of the TRS R: active(f(X)) -> mark(if(X,c(),f(true()))) active(if(true(),X,Y)) -> mark(X) active(if(false(),X,Y)) -> mark(Y) mark(f(X)) -> active(f(mark(X))) mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) mark(c()) -> active(c()) mark(true()) -> active(true()) mark(false()) -> active(false()) f(mark(X)) -> f(X) f(active(X)) -> f(X) if(mark(X1),X2,X3) -> if(X1,X2,X3) if(X1,mark(X2),X3) -> if(X1,X2,X3) if(X1,X2,mark(X3)) -> if(X1,X2,X3) if(active(X1),X2,X3) -> if(X1,X2,X3) if(X1,active(X2),X3) -> if(X1,X2,X3) if(X1,X2,active(X3)) -> if(X1,X2,X3) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(X)) -> mark#(if(X,c(),f(true()))) p2: active#(f(X)) -> if#(X,c(),f(true())) p3: active#(f(X)) -> f#(true()) p4: active#(if(true(),X,Y)) -> mark#(X) p5: active#(if(false(),X,Y)) -> mark#(Y) p6: mark#(f(X)) -> active#(f(mark(X))) p7: mark#(f(X)) -> f#(mark(X)) p8: mark#(f(X)) -> mark#(X) p9: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),mark(X2),X3)) p10: mark#(if(X1,X2,X3)) -> if#(mark(X1),mark(X2),X3) p11: mark#(if(X1,X2,X3)) -> mark#(X1) p12: mark#(if(X1,X2,X3)) -> mark#(X2) p13: mark#(c()) -> active#(c()) p14: mark#(true()) -> active#(true()) p15: mark#(false()) -> active#(false()) p16: f#(mark(X)) -> f#(X) p17: f#(active(X)) -> f#(X) p18: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p19: if#(X1,mark(X2),X3) -> if#(X1,X2,X3) p20: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) p21: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p22: if#(X1,active(X2),X3) -> if#(X1,X2,X3) p23: if#(X1,X2,active(X3)) -> if#(X1,X2,X3) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p4, p5, p6, p8, p9, p11, p12} {p18, p19, p20, p21, p22, p23} {p16, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(X)) -> mark#(if(X,c(),f(true()))) p2: mark#(if(X1,X2,X3)) -> mark#(X2) p3: mark#(if(X1,X2,X3)) -> mark#(X1) p4: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),mark(X2),X3)) p5: active#(if(false(),X,Y)) -> mark#(Y) p6: mark#(f(X)) -> mark#(X) p7: mark#(f(X)) -> active#(f(mark(X))) p8: active#(if(true(),X,Y)) -> mark#(X) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = x1 + 2 f_A(x1) = x1 + 5 mark#_A(x1) = x1 + 2 if_A(x1,x2,x3) = max{x1 + 4, x2 + 2, x3} c_A = 0 true_A = 0 mark_A(x1) = x1 false_A = 1 active_A(x1) = x1 precedence: f = if = true > active# = mark# = c = mark = false = active partial status: pi(active#) = [1] pi(f) = [] pi(mark#) = [1] pi(if) = [] pi(c) = [] pi(true) = [] pi(mark) = [] pi(false) = [] pi(active) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = 55 f_A(x1) = 54 mark#_A(x1) = 55 if_A(x1,x2,x3) = 34 c_A = 60 true_A = 60 mark_A(x1) = 53 false_A = 52 active_A(x1) = 53 precedence: c > active# = mark# = true = false > f = if = mark = active partial status: pi(active#) = [] pi(f) = [] pi(mark#) = [] pi(if) = [] pi(c) = [] pi(true) = [] pi(mark) = [] pi(false) = [] pi(active) = [] The next rules are strictly ordered: p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(X)) -> mark#(if(X,c(),f(true()))) p2: mark#(if(X1,X2,X3)) -> mark#(X2) p3: mark#(if(X1,X2,X3)) -> mark#(X1) p4: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),mark(X2),X3)) p5: active#(if(false(),X,Y)) -> mark#(Y) p6: mark#(f(X)) -> mark#(X) p7: mark#(f(X)) -> active#(f(mark(X))) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(X)) -> mark#(if(X,c(),f(true()))) p2: mark#(f(X)) -> active#(f(mark(X))) p3: active#(if(false(),X,Y)) -> mark#(Y) p4: mark#(f(X)) -> mark#(X) p5: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),mark(X2),X3)) p6: mark#(if(X1,X2,X3)) -> mark#(X1) p7: mark#(if(X1,X2,X3)) -> mark#(X2) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = x1 + 3 f_A(x1) = max{16, x1 + 12} mark#_A(x1) = max{4, x1 + 3} if_A(x1,x2,x3) = max{x1 + 6, x2 + 7, x3} c_A = 1 true_A = 0 mark_A(x1) = x1 false_A = 0 active_A(x1) = x1 precedence: f = if > active# = mark# = c = true = mark = false = active partial status: pi(active#) = [1] pi(f) = [] pi(mark#) = [1] pi(if) = [] pi(c) = [] pi(true) = [] pi(mark) = [] pi(false) = [] pi(active) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = 15 f_A(x1) = 0 mark#_A(x1) = 15 if_A(x1,x2,x3) = 16 c_A = 59 true_A = 59 mark_A(x1) = 57 false_A = 36 active_A(x1) = 57 precedence: true = mark = active > c > active# = f = mark# = if = false partial status: pi(active#) = [] pi(f) = [] pi(mark#) = [] pi(if) = [] pi(c) = [] pi(true) = [] pi(mark) = [] pi(false) = [] pi(active) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(X)) -> mark#(if(X,c(),f(true()))) p2: mark#(f(X)) -> active#(f(mark(X))) p3: active#(if(false(),X,Y)) -> mark#(Y) p4: mark#(f(X)) -> mark#(X) p5: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),mark(X2),X3)) p6: mark#(if(X1,X2,X3)) -> mark#(X1) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(X)) -> mark#(if(X,c(),f(true()))) p2: mark#(if(X1,X2,X3)) -> mark#(X1) p3: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),mark(X2),X3)) p4: active#(if(false(),X,Y)) -> mark#(Y) p5: mark#(f(X)) -> mark#(X) p6: mark#(f(X)) -> active#(f(mark(X))) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{0, x1 - 4} f_A(x1) = max{2, x1} mark#_A(x1) = max{0, x1 - 4} if_A(x1,x2,x3) = max{x1, x2, x3 + 1} c_A = 3 true_A = 0 mark_A(x1) = max{3, x1} false_A = 5 active_A(x1) = max{3, x1} precedence: active# = f = mark# = if = c = true = mark = false = active partial status: pi(active#) = [] pi(f) = [] pi(mark#) = [] pi(if) = [] pi(c) = [] pi(true) = [] pi(mark) = [] pi(false) = [] pi(active) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = 97 f_A(x1) = 91 mark#_A(x1) = 97 if_A(x1,x2,x3) = 3 c_A = 56 true_A = 58 mark_A(x1) = 21 false_A = 20 active_A(x1) = 21 precedence: active# = mark# > f = if = mark = active > true = false > c partial status: pi(active#) = [] pi(f) = [] pi(mark#) = [] pi(if) = [] pi(c) = [] pi(true) = [] pi(mark) = [] pi(false) = [] pi(active) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(X)) -> mark#(if(X,c(),f(true()))) p2: mark#(if(X1,X2,X3)) -> mark#(X1) p3: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),mark(X2),X3)) p4: mark#(f(X)) -> mark#(X) p5: mark#(f(X)) -> active#(f(mark(X))) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(X)) -> mark#(if(X,c(),f(true()))) p2: mark#(f(X)) -> active#(f(mark(X))) p3: mark#(f(X)) -> mark#(X) p4: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),mark(X2),X3)) p5: mark#(if(X1,X2,X3)) -> mark#(X1) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{1, x1} f_A(x1) = x1 + 5 mark#_A(x1) = x1 if_A(x1,x2,x3) = max{x1 + 2, x2 + 3, x3} c_A = 2 true_A = 0 mark_A(x1) = x1 active_A(x1) = x1 false_A = 1 precedence: f > mark# > active# > c > false > if = true = mark = active partial status: pi(active#) = [1] pi(f) = [] pi(mark#) = [1] pi(if) = [] pi(c) = [] pi(true) = [] pi(mark) = [] pi(active) = [] pi(false) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{7, x1} f_A(x1) = 93 mark#_A(x1) = x1 + 38 if_A(x1,x2,x3) = 7 c_A = 99 true_A = 10 mark_A(x1) = 37 active_A(x1) = 37 false_A = 11 precedence: mark# > f = c = mark = active > if > active# = true = false partial status: pi(active#) = [1] pi(f) = [] pi(mark#) = [] pi(if) = [] pi(c) = [] pi(true) = [] pi(mark) = [] pi(active) = [] pi(false) = [] The next rules are strictly ordered: p3, p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(X)) -> mark#(if(X,c(),f(true()))) p2: mark#(f(X)) -> active#(f(mark(X))) p3: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),mark(X2),X3)) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(X)) -> mark#(if(X,c(),f(true()))) p2: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),mark(X2),X3)) p3: mark#(f(X)) -> active#(f(mark(X))) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{19, x1 - 10} f_A(x1) = x1 + 13 mark#_A(x1) = x1 + 6 if_A(x1,x2,x3) = max{13, x2 + 5, x3} c_A = 1 true_A = 0 mark_A(x1) = x1 active_A(x1) = x1 false_A = 1 precedence: active# = f = mark# = if = c = true = mark = active = false partial status: pi(active#) = [] pi(f) = [] pi(mark#) = [] pi(if) = [] pi(c) = [] pi(true) = [] pi(mark) = [] pi(active) = [] pi(false) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = 10 f_A(x1) = 17 mark#_A(x1) = max{1, x1 - 1} if_A(x1,x2,x3) = 11 c_A = 8 true_A = 16 mark_A(x1) = 28 active_A(x1) = 28 false_A = 9 precedence: f > false > true > active# = mark# = if = c > mark = active partial status: pi(active#) = [] pi(f) = [] pi(mark#) = [] pi(if) = [] pi(c) = [] pi(true) = [] pi(mark) = [] pi(active) = [] pi(false) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(X)) -> mark#(if(X,c(),f(true()))) p2: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),mark(X2),X3)) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(X)) -> mark#(if(X,c(),f(true()))) p2: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),mark(X2),X3)) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = x1 f_A(x1) = x1 + 4 mark#_A(x1) = max{1, x1} if_A(x1,x2,x3) = max{x1, x2 + 4, x3} c_A = 0 true_A = 0 mark_A(x1) = x1 active_A(x1) = x1 false_A = 1 precedence: f > c > mark# = false > active# = if = true > mark = active partial status: pi(active#) = [1] pi(f) = [] pi(mark#) = [] pi(if) = [] pi(c) = [] pi(true) = [] pi(mark) = [] pi(active) = [] pi(false) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = 11 f_A(x1) = 25 mark#_A(x1) = 10 if_A(x1,x2,x3) = 5 c_A = 12 true_A = 19 mark_A(x1) = 0 active_A(x1) = 0 false_A = 1 precedence: active# > mark# > f = c > if > false > true = mark = active partial status: pi(active#) = [] pi(f) = [] pi(mark#) = [] pi(if) = [] pi(c) = [] pi(true) = [] pi(mark) = [] pi(active) = [] pi(false) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(X)) -> mark#(if(X,c(),f(true()))) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(X1,X2,active(X3)) -> if#(X1,X2,X3) p3: if#(X1,active(X2),X3) -> if#(X1,X2,X3) p4: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p5: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) p6: if#(X1,mark(X2),X3) -> if#(X1,X2,X3) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = max{3, x1 + 1, x2 + 1, x3 + 1} mark_A(x1) = max{2, x1 + 1} active_A(x1) = max{1, x1} precedence: if# = mark = active partial status: pi(if#) = [1, 2] pi(mark) = [1] pi(active) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = max{2, x1 + 1, x2 + 1} mark_A(x1) = max{1, x1} active_A(x1) = x1 + 1 precedence: if# = mark = active partial status: pi(if#) = [1, 2] pi(mark) = [1] pi(active) = [] The next rules are strictly ordered: p1, p3, p4, p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(X1,X2,active(X3)) -> if#(X1,X2,X3) p2: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(X1,X2,active(X3)) -> if#(X1,X2,X3) p2: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = max{2, x1, x2 + 1, x3 + 1} active_A(x1) = max{1, x1} mark_A(x1) = max{1, x1} precedence: if# = active = mark partial status: pi(if#) = [1, 3] pi(active) = [1] pi(mark) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = max{0, x3 - 2} active_A(x1) = max{3, x1 + 1} mark_A(x1) = x1 precedence: if# = active = mark partial status: pi(if#) = [] pi(active) = [1] pi(mark) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(mark(X)) -> f#(X) p2: f#(active(X)) -> f#(X) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1) = x1 + 2 mark_A(x1) = x1 active_A(x1) = x1 + 2 precedence: mark > active > f# partial status: pi(f#) = [1] pi(mark) = [1] pi(active) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1) = x1 + 1 mark_A(x1) = x1 active_A(x1) = x1 precedence: f# = mark = active partial status: pi(f#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.